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Preface

This outline has been written particularly for readers who have
had at least one year of high school algebra. However, it is com-
plete in itself and may be read with profit by those who are begin-
ning the subject. It is presented with the hope that studerttd
may find it a useful supplement o their textbeok and work‘m
class. It may also serve the purpose of giving any reader-a
knowledge of algebra, without the labor of solving many préblems

It includes the usual topies studied in a first col]ege course in
algebra. Each new term or concept is defined at thefirst time it
enters into the discussion. The various phaged of algebra are
lustrated by several hundred solved ploblen&(s vind figures. For
some phases of the subject, particularly for the Theory of Equa-~
tions and for Determinants, the theorehis are stated in general
terminology and proved only for bpgcw,l cases, It is hoped that
this treatment will give the reader i elear insight into the nature
of the arguments used in proving‘the general theorems.

Two chapters have been devoted o the theory of problem solv-
mg Chapter XI, The Nature of Problem Selving, attempts to
give the student a betth understanding of the use of axioms, rules
of logic, analysis, and tests of conclusions, than is found in most
textbooks. Chaptes XII, Solutions of Typical Problems, gives a
detailed discussiazy of many of the types of problems which usually
cause studentereonsiderable trouble, This chapter also illustrates
some of tle practical applications which may be made of a knowl-
edge of(algebra. :

Several copies of final examinations have been ineluded, some

y thh and some without answers. These should be an aid to stu-
dents in preparing for their own hour quizzes and final examina-
tions. Careful use of them should give the student confidence in
evaluating for himself his mastery of algebra.

G.E. M,

December, 1941,



4

Table of Contents

CHAPTER
I. Some Faets from Elementary Algebra .
II. Special Products and Factoring .
JII, Fractions _ .
IV. Exponents . . . . L N
V. Radicals . . . . M&{ii’
VI. Ratio, Proportion and Vanatlon
VII. Graphs and Functions , \\,
VIIL. Linear Equations . . . . &V . .
IX. The Quadratic Equation in Omb, Ifnknown
X. Systems of Quadratic Equatmns
XI. The Nature of Problem. Sﬂlvmg
XII. Solutions of Typlcal Problems
XIII. Inequalities {\
XIV. Logarithms \\
XV, Progrcssmns . .
XVL Ma,then{atmal Induction and Bmomml Theorem .
XVIIL Complex Numbers
X VIIL weoty of Equations . . .
XIX.« @ennutatlons, Combinations and Probablhty
XX " Determinants .
o\

Appendix
(A) TheV'2is an Irrational Number
(B) The Number System of Algebra
Final Examination Questions
Index

113
120
138
145
151
157
180
193

205

S 206

207
221



TABULATED BIBLIOGRAPHIY OF STANDARD
TEXTBOOKS ON COLLEGE ALGEBRA

{See next two pages)

The following list gives the author, title, and publisher of the
standard textbooks referred to in the table on the two pages
following.

Brink, Algebra: College Course, 1934, Appleton—Century.
Fine, A College Algebra, 1904, Ginn. N\
Graham and John, Advanced 4lgebra, rev. ed., 1936, Prentice-Ha\ll '

Hall and Knight, Algebra for College and Schools, rev. by Sevénoak
1923, Macmillan. - ",’.‘

Harding and Mullins, College Algebra, rev. ed., 1936;’~Macmjlla.n.

Hart, College Algebra, rev. ed., 1938, Heath. o)

Hart, College Algebra, alternate ed., 1932, He%&th

Hsawkes, Luby, and Touton, New Complé&e Sehool Algebra, 1926,
Ginn.

Kuhn and Weaver, Elementary Ooﬁeqe Aigebm 1937, Macmillan.
Palmer and Miser, College Algeﬁm, 2nd ed., 1937, MeGraw-Hill.
Reagan, Ott, and Bigley, g’oliégr; Algebra, 1940, Farrar,

Rider, College Algebra, 3940, Macmillan.

Rietz and Crathom\\lntmductmy College Algebra, 2nd ed., 1933,
Holt. {

Rietz and Qr\aﬁﬁomé, College Algebra, 4th ed., 1939, Holt.
Rosenbadivind Whitman, College Algebra, rev. ed., 1939, Ginn.
ROuse, bolﬁege Algebra, 2nd ed., 1939, Wiley.

'Slsam Coliege Algebra, 1940, Holt.

Shith, College Algebra, 1938, Dryden.

Willard and Bryan, Algebra for College Students 1936 Scott
Foresman.

Tabulated bibliographies 2re exclusive features of the College
Qutline Series and are fully protected by copyright.



QU’ICK REFERENCE TABLE
All figures refer

= |
HANDING HAWXES
CHAPTEX GRAHAM | HALL & HART HART {7 viny
FINE & MULLING
1N mr'ls: TOME BRINK & |OHN | kHIGHT 7 PR (Rev B L GARR B {oairan
- 1,32,48
1| [some Facts from i i 1 I ' ! 68,83, 50
Eietnentary Algwba 3 Ll
Special Products 350,92 | 1 i8 1z B
11 |™nd Factoring » 17 3 - 134
07
W Fracrions 23 7 126 = 3 # 182 A
17, 90
g 05 57 'I-&i'l‘?
L PN— 39 12 165 8 , L
- : 7N\
5 176" 19, 302
v [Redals 1260 i 15t & 1ze8 AT NJian ve
-
B 69 X
" 157 243
Ratio, Propartion 347 1 2
Sy aand VT::Iim 13 ] B B 57 =R { 162 58
BS NS
VIl [ Graphs and Functions. { 5 = 49, B2 517 154 € ) 84 23,275
33 A4
A %, 252
VI |tinesr Equations = 3 » il N\ | 5 5
&
- % !
e L e N L T
>
Systerma of Thiadratic Mo 335
x jhame of ¢ 53 n7 LN 157 143 41 4
R AT
N
Tha Nature of Froblem 32, 4t 43, 51
X | Veapeing 2 [ER & 55 a5 145 24 51
g 125, % €5, 160 102, 124
1 [Solutions of Typleal N\ 45,85 230, 73z 1718290 |46, 145 [ 47 215, 244
Problems. 7N V317 233 5% 157 P
—
| i k 199 195
XU | lnequalitier 143\\ 30 139 2
N
" ] :
Logarlthmes (/47w Eixl 2 352 1y 250 25 527
A
xv WONy .
P“’"“j:":.\ & 354 15 ELY 1] 5 167 564
! on and Binomial | 135 254 4 Ex] m
X i &4 Jes i 143 e ;g% slg
~‘ * )
l 3
. £O0S | Complox Numbers | 149 285 &4 222 €5.315 |o7,20¢ {200 456
) 3
XVHL [ Theory of Equations | 157 426 03 250 2 27 m
X Permutations
inationg A 303
Sombina . 3% 253 293 278
obability 21 9 1 331 263 Erl 53
XX | Dererninants 238 a4 58 1T | a3 ™ #5321 | 306 &9
L

See preceding page for



TO STANDARD TEXTBOOKES

to pages.
REACAN KIETZ & | RIETZ & l ROSEN-
KUHN & PALMER g REASH ——— CRA-~ | BACH | 'ROUSE | e | ouimn |WILLARD
WEAVER | MISER | (DT THORNE | THORNE WHITMAN (2nd Ed.) & BRYAN
Iatro. Raw)| [4th €40 | {Raw. Ed.} .
1 1 i 3 1 1 3 1,18 1 P '
18 24 218 35 24 13 15 5 16 7.9 20
= an 39 46 36 17 1 a3 b 12 P 5
N\
N N
) 18 120 1.57 1,85 54 . 35 o4 8 29 HPN
4 132 t26 .61 12,4 5660 |46 103 4 20, W57
md
14 M 374 127 1 08 155 182 45 o e 168
155 g $
13 22, 83 - as \ 7. 51
A 55 5 11 115,125 | & e 79 5% %3 o
A N )
NG
52 s 5B 0 & 40 55 Irsad, 2 41,75 |65
2
152 AN\ 5
[ LE 215 7 108 71 nd N 102 A 107
~
P g
121 173 Falel ki 124 SBV,':' 140 154 125 ) 143
D
14 a3 o 58 31,33 32 4, 8,47
& 74,83, 166( o2 L]l 1§ . 3;’ 80 s EN B e
EY] 145,164 | 113,238 | 22,53 Jalde TR 123,125 | 147,139 | 108 .52, 67 103
100 181 250 303 {2 toy, {4 183, 138 | 5O B hia 156 i gs |12
€. & N
\\
e 190 3% | 141 103 197 170 -3 129 160
135 228 135 " 212 224 181 2 w6 231 93,106 |68, 201
’\ o
=
159 269 N6 196 1% 115 166 lo5 138 136 180
X
S S .
e Spass L 134 169 s 184 213 154 120 192
~\’ 3
-\ "4 &, 29
\5,,..95 147289 | 122197 [ 9, 162 [ 103,176 | 70032 55,205 |108.239 [R3M (28158 LR,
3
2n ’ 184 163
B e 247 174 186 142 225 ) i s 208
260 383 8 247 250 208 334 26t 253 248 260
270 % 28 55 214 274 264 256 393
56,215 | 10t 367 |30 m 72,274 j 43230 [ 100,358 | 291 7,2 | 207 50. 130

complete titles of books.



)

o
&
\
\‘\0
An Outline o
COLLEGE A‘Iagi RA
~$
<&
O
Q)é'
O
o%’
N
N\



CI-!AP_’[‘ER.I
SOME FACTS FROM ELEMENTARY ALGEBRA

1. Introduction. ~

Before taking up a systematie treatment of the usual j;e%ics
which eonstitute a course in college algebra, it will be helpfuifo
us to discuss some of the elementary concepts which thestudent
hag already met in his high school algebra course. A
s,

9. Some Classes of Numbers, O

We shall begin by recalling that numbersias we have already
met them have been divided into three dlasses:

a) Integers: whole numbers suehag 1,2,7,43, 967, —32, ete.
) Rational fractions: suchas s —%, 1, — &, ete. _
¢) Irrational numbers: gxamples of which are V2, V3, ete.

We shall give definitions of. fhése three types of numbers (all of
which are real numbers){ bs occasion arises. For the present we
shall econfine our attefition to integers and rational fractions.

-

3. The Fundariental Operations.
The funddmental operations are:

@) Addition
ph\Subtraction
: ';}:) Multiplication
% d) Division
<\‘; *¢) Raising quantities to powers
f} Extraction of roots of quantities.

We shall presently discuss each of these operations in detail
with respect to its applications to various classes of numbers.
4, The Unit 1.

In order to have & system of enumeration, we ghall designate
1 as the unit quantity. This unit has the following properties:
1
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a) 1 added to itself gives & new quantity 2, ete.

b} 1 added to any integer N gives the next high integer
N+1. ' :

¢} 1 multiplied by any number N gives N.

d) Any number N divided by 1 gives N.

8. Negative Numbers, ~
These numbers enter in various ways into our scheme of
enumeration. For example, if the temperature drops low epough
we begin to falk about “degrees below zero”; even the d{mi};}‘news—
papers carry accounts of temperatures of —5, —17, ete g 40 indicate
that below zero weather is being experienced. A% therefors
assume that the reader is already familiar with the \concept of a
negative number. These numbers also arise From the operation
of subtracting a given positive quantity fretn’a smaller positive
quantity. AV '

X 3
"

6. The Number Zero, | o\ >

Another number “which negds special consideration is 2610,
It is neither positive nor negative.  We usually think of it as
separating the positive fromthe negative numbers.

If we delineate numbers as positions along a line, we have the
usual scheme such AN

75(—"4—3-2—1 0 1 2 3 4 §

This 553@@1“11& gives rise to the ides of order among numbers,
and we'sAy that —4 is less than —2, —-1is
of the{positive numbers, -

.‘\'.The number zero, designated 0, has some distinct properties
~apfollows:

less than zero or any

@) Zero added to or subtracted from any number N gives N.

b) Zero times any number N gives 0.

¢) The division of any number N by zero cannot he defined.
(Some t'exf;s express this fact by saying that division by zero is not
& permissible operation.) We shall discuss the details of this
situation in Sec. 55.

d) Zero divided by any number N {not zero) is zerg,
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7. Addition.

Whereas in arithmetic we have used all of the fundamental
operations as they apply to numerical values, we now wish to
study these operations as extended to apply to more general
numbers.  Part of cur work will be the representation of numbers
by literal values. Such literal values will represent either fixed
values (or constants) or varishle number {or variables).

By the sum of two quantities 2a and 3a, which is 5a, we means

2a -+ 3a = ba. (N
Also (2% + 5ax + 7) + (® 4 ax + 3) = 32 + 6ax + 100

Furthermore, 6 + 3 = 3 4 6, or more generally~g +b=
b 4+ a. This latter expression means that the sum of wo or more
quantitics is the same in whatever order they are“a}ided ThlS is
known as the commutative law for addition.

Finally, 2 + b + ¢ = (a + b) + ¢ w54+ (b + ¢). This
means that the sum of several quantities mthe same regardless of
the manner inwhich the partial sums aré grouped;ie.,3 + 2+ 4=
B+2+4=34@2+4;o0r ok 54486 eto. This
is known as the associative law fgrﬁa]ddition.

™
e

8. Subtraction. £
In arithmetic we leﬁﬁied that 7 — 8 = 4. In the same sense
we have for algebraf8x — 2x — x. Again, 4x* + x +11 minus

x4+ 5x 4 3 yielde 3x® — 4x + 8. This may be obtained by
writing: N\

\\ 4x2 + x4 11
\\ 4 minus  x*+ 5%+ 3
o 3x? —4x + 8

Aor: (4x? + x + 11) — (2 4+ 5x + 3) = 3x2 — 4dx + 8,

\and one may think of this as being arrived at by changing the signs
in the subtrahend and proceeding as under the operation of
addition.

Subtraction ig, then, the process by which we find b say from
the relationship a + b = x when we are given a and x. This
value b is expressed algebraically b = x — a. Hence we may
look upon subtraction as the inverse of addition. If a is greater
than x (expressed symbolically a > x), then b is negative. If
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a =%, then b = 0. And if a is less than x (expressed a < %), b
is positive. - ' :

Since £ — 7 = ~3 is not the same a5 7 — 4 = +3, we see
that the cornmutative law does not hold for subtraction. -

The associative law, however, does hold for subtraction.
Before going further, we must discuss the use of parentheses.

9. Symbols of Grouping. . Q)
The signs of grouping ordinarily used are the parentheseg 6\),
brackets [ ], braces { |, and vinculum — . These symbels

are used to bind together eertain terms, and to show the order of -
- sequence of the various fundamental operations. Th&Ir uses can
be best shown by examples. There are a few ruleg which govern
their use, and these we now state: \V
Rule 1. g \\
Any of the symbols of grouping ,gs@y be removed from an
expression enclosed therein withgub,altering the expression,
provided the grouping symhol is preceded by a -+ sign. .
‘Rule 2, A\

*ad

bols of grouping precgded by a + sign, without altering the
signs of any of the };e{*n}s 80 enclosed.

Ruie 8. \\ )

Conversely: Any eRpression may be enelosed by sym-

If any expression is enclosed by a symbol of grouping
prece.ded:by 4 — sign, the symbol may be removed provided
the sigmof-every term so enclosed is changed,

N\

Rule 4./

o Conversely:. Any expression may be enclosed by a

o ~ 8ymbol of grouping preceded by a — sign, provided the sign

C \™ of each term 80 enclosed is changed.
Hlustration 1.

Simplify the following by
and eombining like terms:

2%+ 3[x - (20~ (a + 4b)} + 2(x — 2b)).
By removing the ing .
step, we have the following e

removing the symbols of grouping

ermost symbol of grouping at each
quivalent expressions:
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2% -+ 3[x — {2a — a — 4b} 4+ 2(x — 2b)]
=2 4+3[x—2a+a+4b+ 2x— 4b]
= 2% - 3 [8x — a]
=2x 4+ 9x — 3a
= 11x — 3a.
An equivalent statement for the original expression eould
be written using the vineulum instead of the parenthesis, asfollows:.

2% + 3[x — {2a —- a + 4b} + 2-x — 2b]. \
Usually the vinculum is not used until the other symbols
have been exhausted.

{llustration 2.

Enclose the last three terms of 2x — 3x, -+-\4\b —ax —y
in parentheses preceded by the minus 51gn

2x—3y+4b—ax—y—2x—-3y ( -1b+a,.\+y)

 §

10. Muiltiplication. o\ 4 :
By the product of two expregsmns aand b, we meana X b
and express this product by a number csuchthata X b = ¢
Another symbol which 1&used for multiplication is shown by
the following symbolic notation:
. a X”b =ga-b=ab=ec :
Thus, 3 X 4 means\4 + 4 4 4, which equals 12, Also4 X 3
means 3 + 3 + 3,43, which equals 12. Binee3 X 4 =4 X 3 =
12 we have out\fitst indication of a principle or law which holds
for multlph@\mon
Webdythata - b = b - a and mean by this that the product is
the samte whatever the order of multiplication. This is known as
1;}1¢~§0nimutative law for multiplication.
\\; “Extending this idea we have,
a-b-e=a(b-e) = (a-bje = {a-c)b, ete.
As a pumerical example:
3.2.4=32-4)=(3-24=(3-4)2=24.

This is known as the associative law for multiplication. _
Another prineiple of multiplication ig illustrated as follows:

alb + e+ d) = ab + ac + ad.

s
S
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This is known as the distributive law.

If o number a is multiplied by itself we write a - a = &’; also,
a4 - a = a% the index 2 or §, ete., indicating the number of times
the quantity a is used as a faetor.

Example 1: Thus a product fike 2ab? - 3a%h% = 6a®bs.
Example 2:  Algo, 2ab? - 2a%h - 3ac = 2- 2. 3 - ath%e

= 22.3 - athie

= 4 - 3a'bie

= 12a'b%c. O
Example 3:  2a(x* - 5ax + be) = 2ax® — 10a’x + 2abe.”

s

11. Division. ‘ 3

The quotient obtained by dividing any numbe:fxa" by & number
b (where b is not equal to zero} is written a -+ hera/b.

To divide any number a by any number’d means to find a

number x such that bx = a. Division ig}'\f;herefore the proeess by
which this number is found, and is ingdieated a/b = x.

It foliows alse, since ¥ is not pqﬁ_al to %, that the commuta-
tive law does not hold for divisiopa
12. Rule of Signs for Multifification and Division. .

a} The praduct t{’"quantities of like signs is a positive
quantity. ()

Exsmples: 3-4=92; (~3)(—4) = +12; (—a)(—b) = +ab.
b) The }‘J\l’ddt'lct of quantities of unlike signs is negative.
Examples;-(8) (+4) = ~12; 3)(—4) = ~12; (—a)(b) = —ab.

C)\\rhe quotient of quantities of like signs is positive.

\ +12 —~12 _ .
E@mples: = T = g (—a) a

~C 3 "(=b) " b
\/ d} The quotient of quantities of unlike signs is negative.
Examples: — 12 .24 _ 8 Ha . a

—:'__4_'_——-— T w= = —
+3 T +b B —hb b

¢) The continued product of an even number of negative
quantities is a positive quantity.

) The continued product of an odd number of negative
quantities is a negative quantity.,
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These above facts are stated here as rules. A detailed study
of their validity, based on a postulatory basis is a topic which
properly belongs to an advanced course In algebra. Most first
courses do not attempt to verify these facts.

13. Products and Quotients of Multinomials.

An expression which contains but a single term is called an_
monominal, Most algebraic expressions contain more than obe

term, and such expressions are called multinominals. 9 \:\
The method of obtaining products and quotients of ymulti-
nomials will now be illustrated. ¢ ‘
Hlustration 1. S ,
Find the product obtained by multiplying”

NY;
255 + Tx?y — 4 by xi’”{ ,‘Scy.

Such a product is found by..rﬁul{siplying each term of the
first expression by each terag'of the second and adding the
results. Thus, N

2y 4+ TxAy N~ 4
(R 2xy
2Tty — 4x?
-y — 1ax®yt + 8xy.
N2 + 3xty — 4x* — 14x%y? + 8xy

&ihs of the same degree, such as +7x'y and —dx'y, are
placed in the same column. :
PN )
N, Ilustration 2.

Y Find the quotient obtained by dividing
8x¢ — dxty -+ 6x'y? + 4xly — 2¢%y* + 3xy° by 2x* + ¥y.

Here the dividend is already arranged in descending powers
of x beginning with 8%, and bad if not been arranged in
this order, the first step would be to so arrange it. The
divisor is likewise arranged before actual division is begun.



8

COLLEGE ALGEBRA

2x? + y|8x° 43(43, 4 6xy? 4 4wty — 2x%y? + 3xy? 4x® — 2xPy }-3xy?

8x° + 4x’y
— 4xty + Bx°y? . = 2x%y? 4 3xyt
— 4xty — Zxy?
+ fxéy? + 3xy?
oxly? -+ 3xy?

The result in the quotient is obtained as three distinect
terms, namely 4x® — 2x?y 4 3xy®. The first term of thig
quotient is obfained as follows: The first term’ g;{‘{h_e
divisor is 2x* and is contained in the first term of shp divi-
dend 4x* times. The complete divisor is now,_wnnltiplied
by 4x?, yielding 8x° 4 4x%, and these termg. are placed
directly below similar terms in the dividénd before sub-
tracting. The next step is obtained b poting that 2x?
i3 contained in the first term of the partial dividend — 2%y
times and proceeding as before. This process is continued
until the division is completed\'In the example above
there was no final remaindef,)so that the division was
exact. In case therc is a fipal remainder, it is divided by
the divisor and added.fo‘the quotient. For example, if
38 is divided by 5, weRave:
5| /88

, +L)"7 and 2 remainder of 3.

The quotign}\l\h this case is 73.

14, Azioms,dPEquality,

A? in’:)it;rithmetic and geometry we need to make use of the
fi ollowa’f;\axi oms: '

oA

/N

\‘:

3.
4,

5.

1§ equals are added to equals, the sums are equal.

H equals are subtracted from cquals, the differences are
equal.

If cquals are ml}ltiplied by equals, the products are equal.
If equals are divided by equals, the quotients are equal

{provided the divisor is not zero)
Expressions which are e
equal to each other.

The same powers of equals are equal.

The same roots of equals are equal.

qual to the same quantity are
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The student should already be familiar with these axioms and
should realize that the application of them must be adhered to
strictly in manipulating with algebraic expressions. The writer
has found frequently that many difficulties and mistakes en-
countered by students in mathematics are duc to the failure to
apply some one or more of the above axioms. Attention will be
ealled from time to time to their application in particular instances.

Study them carefully! ~
16, Definitions. ' O
A\
Equation. An equation is a statement of equality Detween
two expressions. N '

Classes of Equations. There are two gegé\rﬂ classes of
equations: : \/

a) Identical equations are those whigh\reduce to the same -
value for both members, regardlessel the values assigned
to the letters or symbols, AV

Tlustrations: ‘,":L :
(a+ b) = i} 2ab + b
(x — 3){x —2P=x* - bx + 6.
b) Conditional equ@ttions are those which are true for a
restricted @bm of values of the letters or symbols used.

Tlustrations: ™\
% —8&x+4istrueonlyif x =7
X 4ax— 12 =Oistrueonly if x = 3orx = —4,
'\%ﬁ>%43y= Sistrueif x = land y = 2;
o \as well as an indefinitely large number of pairs of values
/%" which may be obtained by chooging a value for x and
\m y computing the corresponding value of y.

Equations are made up of terms, which are set off from one
another by + or — signs. Thus in ax® — 4xy* + T2y + 5x -
2by? = 0, there are five terms. 'The letters a, b, and the numerical
values are constants, called the coefficients of the terms. The
values x and y are called the unknowns or variables of the equa-
tion.

Degree of a term. This is defined as the sum of the exponents
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of the variables of the term. Thus ax® is of degree 3; 4xy? is of
degree 1 in x, degree 2 in y, and the total degree of the term is
2 +1=3; 7x%° is of degree 2 in x, degree 3 in y, and of total
degree 2 + 3 = 5.

Degree of an Equation, The degree of the highest degreed
term which occurs is taken to be the degree of the equation. In
the illustration above, the equation is of degree 5 beeanse this is
the highest degree term which oceurs. O

Equations may be elassified as to degree: <
Equations of the first degrec are called linear, ¢\“ °
Equations of the second degree are called quﬁd::;.“t/ic,
Equations of the third degree are called cubig, 3
Equations of the fourth degree are ca,l]@:diqﬁ&rtic, ete.

The value or values which satisfy an sQuation arve called

solutions or roots of the equation. oY
% 3
»’:',
» Q:..‘
.x'.: .
Q
A
e
O
7% N/
NS/
x:\Qt’
E"\'"
’\\u'
R\
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SPECIAL PRODUCTS AND FACTORING

16. Some Simple Products. (N

There are certain fundamental products which play such*an
important part in what is to follow that we now enumerate-them.
Each of these depends for its proof upon the actual. multi-
plication. A\ '
A x4ax-+a)=E+ 8P =x4 2az Aval
The second part of relation (A) [that is, (X a)%] follows at
once from the definition of a produet of a '\))u’ity' by itself. The
last part is obtained by actual multiplicgtio; thus:
. x+a (O
x + a ¢ N
=2 —-|",8.}(":  J——
“ax +a! |
m{“ 4+ 2ax -} a?
The next few of thiese products follow, and the reader is urged
to verify each of them by performing the multiplication.
B (x—\a.)(x —a) = (x —a) = x*— 2ax } a?
8] (m~"2)(x + a) = (x + 2)}(x — a)} = x* — al
D) \::j@kﬂ-a)(x—{-b) =x 4 ax + bx + ab
N\ x? 4 {a + b)x + ab.
x* 4+ ax — bx — ab
%2 -+ (a - b)x — ab.
cdx? 4 adx + bex + ab-
= ¢dx? + {ad + be)x 4 ab.

2 8

LB (xta)x—b)

i

o~

OF (ex+a)dx+b)

i

17. Applications.

The relationships given in Sec. 16 are useful in forming
products, and one considers them as rules for writing the product
without performing the actual multiplication. In this sense they

play the sanre role in algebra that the multiplication table does in
il
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arithmetic. For example, a8 soon as one learns the arithmetic
multiplication table, the product of 5 - 9 is written as 45 without
adding to find that 9 +9 +9 + 9 + 9 = 45.
THustration 1.
Write the produet of (x 4+ 3) by (x 4+ 3). 1a this problem
the type is {A) of Sec. 16, with a = 3. Hence, (x + 3)
x+3) =@+ =x+2-3x+F=x2+6x+9. ~
Mustration 2. . a
Write the produet of (x — 5)(x + 5). This is j;.}(';ib’k(}‘),
with & = 5. Thus (x ~ 5)x + 5) = x* — 25., \ :

N

THustration 3. N\

Write the produet of (x + 8§)(x + 2). .T‘I'sigis type (D),
witha = 5,b = 2. ’

X+ 5E+2) =2+ (5 + Dx + 508% x? + 7x + 10.
. e

Mustration 4. AN
Write the product of (x + 86~ 8).. This is type (E).
Hence; AWy _
(x+5)x —3) =2+ GFEx — 5.3 = + 23 — 15.
Illﬁstraﬁon 5. NP

Write the progmgi of (2x + 73(3x + 5). This is type (F),
with ¢ = 2,§\=’7, d=3 b=25 Hence:
@x+NBx+ 5 =234+ T -3+5-Dx+5.7

’\~ = 6x* + (21 4 10)x + 35 = 6x* 4 31x -+ 35.
Illuat;{tidn 8. _ .
) Below are listed several exaniples to illustrate common
L Mypes. .
(J\i—' B)(x —6) = (x — 6)” = x* — 12x -+ 36.
"\;(X-!—z)(x*-ﬁ)=x2+(2~6)x-—12=x“-4x—-12. . .
E—Dx—3) =x - 2+ IHx + (=3)(—2) = x* — 5% + 6.

The special products may also be stated in words. For
- instance (a + b)2 = a? + 2ah + b* may be written;

The square of & binomial is equal to the square of the first

term plus twice the product of the first and second terrms

plus the square of the second ferm. :

The type (2 — b)(a + b) = a2 — b? can be written:
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The product of a difference and sum of two quantities is
equal to the difference of the squares of the quantities
The reader will find it beneficial to state the special produets
in words instead of formulas. :

18. Other Special Products.
Further types which the student should wverify by actual

multiplication and then memorize are: Q.

@ X+ a3k = (x—f—a){x—i— al{lx + a} = x* + 3ax? +3a\x
+ al, £\

H) ({x —a)®=x*— 3ax® + 3a% — al G\

N (x4 a)x® — ax -+ a2 = x® 4 al )

J} (x — a){x? + ax + a?) = x* — &’ \\

K) {a+b—|—c)2—a?+b2+c2—|—2ab—!—2ac+2hc

LYy (a—b—e2=a>+b 4~ 23})\\’ 2ac - 2be.

The two types (K) and (L) are casilyeen to be extensions of
type (A). Note that in (K) the right’hawd expression consists of
the squares of each of the three quantltles plus fwice all the prod-
ucts formed by taking two te rms at a time. (That is, twice a
and b, twice a and ¢, and ’rwme b and ¢, thus exhausting all the
types of products taken two Bt a time.}

Ttustration 1. , ”\
Write the va,lﬁe\)f (x + 2)3. This is type (&) witha = 2.
Hence:, 7

(x + 2)8 = \“ 3(2);;2 F3@x + 2 =2 b 6 12x + 8.
Tugfration 2.

. Whte the value of (2y — 4)3. Thisis type () with x = 2y
AN vand a = 4. Hence: :
@y~ 40 = (2y7 — 3@ + 300%2y) ~ @°
= 8y? — (12)4y* + (48)(2y) — 64
= 8y? — 48y* + 96y — 64.

Itustration 3.
Write the value for (x — y -+ 3)% This is type (L).

(X—y+.3)2-—-x2+y2—|—39—~'-2x-y+2-x-3—2-y-3
= x% 4 y? + 9 — 2xy + 6x — 6y.
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Tllustration 4. _
Write the product of (x — 2){x® +- 2x + 4). This is type
(J) with & = 2. Hence we may write the produet im-
mediately knowing that it consists of the difference of the
cubesof xanda. Thus:

-2+ 2+ 4 =x—B=x—8.
N\
19. Factoring, .
. The special products have an important use in resql\viﬂg 8
given algebraic expression into its component parts, or \factors.
Their use can best be shown by examples. N

S

fllustration 1. mj\.\

Find two expressions whose produet iz ¥ 4*'ax — bx — ab.
By comparison with type (E} we sed.that here we have
given the right hand member. Hence we can write the
factors-at once, obtaining: x* 3hak — bx — ab = (x+ a)
(x — b
Another approach to this game problem would be to note
that the first two terms ¢emtain a factor %, and the last two
terms contain a factor .’ Hence we may write:

%%+ ax — bx — ab =:..x§;+a) —blx +a) = (x + a)x - b)..
Dlustration 2. \\ )
Find the fattors of x2 + 7x + 12, By comparison with

(D), x44a + b)x + ab, we see that we must look for two
numbers g and b such that their product is 12 and, their

27N W
nis 7. .
By inspection we see that a — 4, b=3,0ora=3 b=4
" satisfy these conditions. Hence :
\3“ x2+7x+12=(x+,4)(x+3).
Dlustration 8.
Factor x2 — x - 19,

In this example we must find two numbers a and b such
that their sum is —1 and their produet is — 12, Hence:

X2 — x—12=(x - 4(x + 3}



SPECIAL PRODUCTS AND FACTORING 15

Tlustration 4.

Factor x* — 13x 4+ 12.

In thiscase a + b = —13,a-b = 12. Hence:

- 18x + 12 = (x — 12)(x — 1).

Hustration .

Factor x*+ 6x + 9. -

This expression is a perfect square. One recognizes a perfect £\
square in the following way. From (A), Sec. 16, (x + a)?
= x* + 2ax + a%. An examination of the right ]\m:&
member shows that when a binomial is squared,,'the €0~
efficient of x is equal to twice the square root of the third
term at. The square root of a? is a, and {iﬁ! 3 in our
problem. Hence: O\ S

X4 6x +9 = (x + 3%\
Note 1. The reader should note that an expression such
as x* 4 10x + 9 is not a perfect®uare. For applying the
test indicated in this illustration, a’ = 9,8 =3, and 2a =
9.3 = 6. The coefficientof x is 10 instead of 6, and thus
2 + 10x 4 9 is of typelD) and equals (x + 9{x + 1).
Nlustration 6. m<
Write the fac xgiof x® — 49.
This is typeXC) with a* = 49 and a = 7. Hence we may
write: "
NS x =49 = (x - iz + 7).
Illqsq';}i’o'n 7.
. :W}ite the factors of x* 4 27.
~\"This is type (G) with a* = 27 and a = 3. Hence we may
\m VY write:
: x4+ 27 = (x + 3)(x2 - 3x 4+ 9). _
Note 2. Later, in Chapter 1X, See. 68, we show that this .
second factor has no real linear factors.
Hlustration 8.

Write four factors of y® — 64.
This is type (C) if we think of it as (y°)* — (8)° where
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X= y'8 and a = 8, and we can now apply our rule to the
factoring of the difference of two squares. Consequently,

Y- 64 = ()~ (8) = (37 — B)(y* + 8).
But each of these factors can be factored again by types (J)
and {I) respectively. Therefore:

Y 6=y~ 25 + 2y + Oy + (32 — 2y + 4). _
Another method of factoring y* — 64 would be to considen
it as (y9° — 4% and then apply type (H) with x = y2 Emd
a =4 Thus: N

G =4 = (v ~ H* + 457 + 16) N\

= -9 +2G+ 2w + D 727+ 4).
The process for obtaining these last 'tw?o\factors from
y¢ + 4y* -+ 16 will be discussed in the mext, illustration.
Tustration 9, ' . \\'

Find two factors of y* + 4y* + Iﬁ,.\
This does not come under anynof the types which we have
discussed but may easily he \brought under type {C) in the
following manner. By.ib$pection, we note that y* + 8y®
+ 16 is a perfect squiire, namely (y2 4+ 4)2. In order to
obtain this fromthe given expression we note that the
term 4y? must ibg\increased to 8y? by the addition of 4y2,
But in ordefddo leave the value of the given expression un-
changed we, must then diminish the same by 4y Thus
by both(@dding and subtracting 4y?, we obtain:

VAP 116 = v 4 8y 116 — 4y = (4 + 852 4 1) — 4y
\O~ =+ 4 — @2y

. ~.j?This is now the difference of two squares.)
8" Factoring according to type (Q):

I+ 9%~ @) = I 4~ 2411y + 4 2] m g 2y - 4)
o +2y +4). T
Nustration 10, )
Find two factors of x* -+ 4y,

This can be done by the use of the same ideas which were

applied in Illustration 9. Note how one discovers a clye
- o the amount to be added ang subtracted. . -
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The square root of x* is x?, the square root of 4y* is 2y*
Twice the product of x? by 2y?is 2(x%)(2y?) = 4x’y%. There-
fore by adding and subtracting 4x°y*, we have:
X 4 4yt = x4 4x%° + 4yt — 4% = (2 4 2D — (2xy)5
which now is the difference of two squares.

Hence: x* + 4yt = {(x* 4 2y — 2Zxy)(x® + 2y + 2xy).
Tllustration 11,

Factor x2 - y% 4+ 2by — b% N

By grouping this and enclosing the last three tems h
pareutheses preeeded by a minus mgn, we have

— =2y +b) =2 (y— b),
wh.ich is of type (C) Hence:

(

-y +2%y-b=[x—(F- b)][K\\‘ (y—b)l=
&—y+w@+y L R e

THustration 13. \ S

Factoring by grouping terms

Factor xty — 3x%z 4- 2xy w2 Gxe.

From the first two terms factor an x2 and from the last two
- terms factor 2x. ¢Then we have: x¥(y - 3z) + 2x(y — 32) =

W~%MHQM*W—%m+mx

- 20. Factors of {an — b®) and (a® -+ b=).

Before\l'\awng the general topic of factoring, we should make
note of several conditions which determine the factors of the
two ferms {a® — b2)and (a® + b®).

\We shall find that the factors in these cases depend sometimes
\013 *L" being an odd or an even nurnber.
(1) For all integral values of n,
a® - bn = (a — by{a®? + a~%h +arp + - - - - - + abr?
+ b,
Tha,t is: an — bo is always divisible by (a — b) and the
second factor has all coefficients equal to +1. Thus,
X5 — ¥ = (x — y)&x* + 3%y + 2y + xy° + ¥
Also, a4 — b* = (& — b){a® -+ atb + ab® + bs).
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This Iast expression can be factored another way, since it
can be written: at = bt = (a?)? — (b?)?

= (a* — b%)(a* + b?)

= (2 — b)(a + b)(a® + b%.
The reader should verify that in the first method shown
above, a3 + a%h + ab? 4 b® = (a + b)(a? + b?), so that in
the end the same result may be obtained.

(2) For an even value of n, o
a" — b2 = (g + b){ar — an-?h 4 gn—3h? . ga—dps = m e

That is: a» — b» is always divisible by (a + b)“and the
second factor has coefficients alternately +i\and —1.
Thus at — bt = (g + b)(a® — ath + ab?® ;.}bg), “and the
reader should verify that in this case the~s§:co‘hd factor ean
be decomposed so that: . 'M"\'\

at — b* = (2 + bi(a — b)(a? + b3 uY before.
(3 Foranodd value ofn, )~ |
a" + br = (a 4+ b)(ar — a“,\zb + ar3hi_ .. — ghnt
b=-1y, ¢ ’ N _
Thus, x* + v = (x + 3¢ - 2y + =y — xy° + ¥
(4) ‘There is N0 value®f n for which
a® 4 b® will be diwisible by (a — b).

21. Highest Comufon Factor.
Certain nuibats or expressions have no factors in common.
Thus 3 and Ahave no common factor. Alse, x +asnd x— 5

have no fagior'in common. Such expressions are said to be prime
to each dther, or relatively prime.

Lettain other expressions have one or more prime factors in
comtmion. Thus 6 and 15 have » common factor 3. Also x* — a

&
dnd x* — a® have a common factor x — a,

In many instances one is interested in finding the largest ex-
pression which is common to two or more expresgions*, This
greatest factor of seversl expressions is called the highest cor
factor and is usually abbreviated by IL.C.F.

A simple way to find the H.C.F. is to write each expression as
3 product of its prime factors, then form the product of all the
common prime factors. This product is the H.C.F. '

mmon

* For algebraic expressions one finds the factor of highest degree.
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Example 1. Find the H.C.F. of 36, 54, and 90.
Solution: 36 =2-2-3.3
54=2-3-3-3
90 =2-3-3-5
In this case 2 is a common faetor and 3 appears twice as a
commeon factor. The produet 2-3 -3 or 18 is the H.C.F.
Example 2. Find the H.C.F. of x* — 8, x* — 2ax + a?,

and x* — ad.
Solution: The prime factors of each expression are:
X —-a2=(x—a)x+a) A
xt — Zax + a? = (x — a)(x — a) O
¥ —af = (x —a)(x + ax + a?).

The only factor common to all three is (x — a) ;;henéze the
H.C.F. = (x — a). o

22. Lowest Common Multiple. \\

The lowest common multiple of two m\more expressions is ~
defined to be the least quantity which contams the given quantities
as factors.

In order to find the L.C.M. ane proceeds as follows. First,
write each of the quantities as, a product of its prlme factors*.
Then form a product wh.lch coiitains each distinet prime factor
ag many times as the maximum number of times it occurred in

any one of the given g a‘:\iuties.
Example 1. \d the L.C.M. of 12, 15, 18, 21,

Solution The numbers may be written as a product
of the fagtors, thus:

~C 12=2.2-3
P\  15=3-5"
.:.". I8=2-3-3

~O° 21 =3-7.

N\ } Since 2 oceurs as a factor twice in 12,
Since 3 occurs as a facior twice in 18,
Sinee 5 occurs as a factor only once in 15,
Since 7 occurs as a factor only once in 21,
the L.CM. =2-2+3:3.5.7 = 1260

* For algebraic expressions one writes the irreducible Iinear, guadratic, etc,
resl factors.
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Example 2. Find the L.C.M. of a? — 2a — 15, a? + 2a
— 35,anda®* 4+ 10a + 21.
Solution: These may each be factored as,
82— 25— 156 = (a — 5)(a -+ 3)
a'+ 2a-35=(a-5a+T)
8+ 10a 4+ 21 = (& + 3)(a + 7).
Hence the LCM, = (a — 5)(a + 8){a + 7).
One usually leaves the L.C.M. in the product of fa.c!ﬁbrs
form rather than perform the indicated multaphcatlozl
Example 3. Find the L.C.M., of x% — a2 x’*‘ +. 2@: M a2,

and x* — a?, \J
Solution: The factors of each are: '\&
xX—-a= (x—a)(x+a) \\
x? 4+ 2ax + af = (x + a}(x + al)

—al= (x —a)(x -{ax + a%).
Hence the LOM. = (x — a)(X‘-‘IF 8)2(x2 + ax + a?).
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" 23. Introduction.

E A fraction is an indicated division. Thus 3 divided by 4 T
' usually written 3. In general, a/b is the notation for a fractiop, |
“where b is not equal to zere. 'The part “a” of the fraction iﬁég,lled
 the numerator, and “b” is called the denominator. Twgofractions
which have the same value are said to be equivalents Thus §
and 4 are equivalent. The fraction % may\be obtained
from 2 by multiplying both numerator and glgn\oininator by 3.
Conversely, & may be reduced to the form-$\by dividing both
numerator and denominator by 3. This Intter we call reduction
to lowest terms, and a fraction so reduegd 48 said to be simplified.

Finally, it is to be understood that the three fractions,
9 9 JON

——y

5 ) 2 are all equivalent, ™ "

3 -3

AN\
24, Addition and Subt:{cxﬁoh of Fractions.

As in arithmetic {ractions may be added and subtracted,
after they have beendeduced to the same denomination. Thus,

1 3002 6 9 8 6-+9—8 7.
QJ“\\Z.‘“E“E"'E‘E‘T“E
The readér will note that the process of reducing fractions to &
comméh denomination involves the siep of finding the L.C.M. of
thé\'s@p“a,rate denominators. For example, in the above illustra-
tion the L.C.M. of 2, 4, 3is 12. The fraction § may be changed
to 12ths by multiplying both numerator and denominator by 6.
Or one may change } to % by dividing the denominator 2 into 12
and obtaining 6, then multiplying the numerator 1 by 6.
Example 1. Perform the indicated operations:
1 1 2a
x—aTxta ¥-
21

; and reduce to lowest terms.
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Solution: : :
The L.CM. of (x —a), (x+a) and x* —a? is (x — a)
(x - &} or x* — a2 |
This then must be used as the common denominator, and

we have: R
1 1 29 x+a X—4 8
x—a+x+a_x2-'-a2=_x’—a"+x9—a.““ X — a?
x+a+x—a--2a=2x—2a_2(x—a)= \
x? — a? e — g Xt — a2 O\
x—a 2 . A\
G+a)l—a x+a - A\

This last step may be accomplished in elthér :‘.if two ways,
Both numerator and denominator Jady 'be divided by
x — a, or the actual division of theJfactor (x — a) of the -
denominator into the (x — a) of\he numerator may be
performed. This procedure ig §ometimes called cancelling,
yet the reader should reshze’ that cancelling is not an
operation of algebra, but’g’ai;hér the result of actual division.
Example 2: Perform the indicated operations
3 -f2x + 5 8_“3&’ 2x23x_-; 4_ 3 and reduce the result to
lowest terms, {
Selutiong ¢\ -
The L.CM. of the denominators is (2x — 3)(x - 1),
Not.gi that 3 — 2x is contained in this common denominator
~:(§; + 1) times. Hence the numerator of the first fraction
* ~Inst be multiplied by — (x + 1) when we write the fraction
,§~with the L.C.M. as a denominator. _
Writing the above fractions with a common denominator
N { .\: ) glveS:
} b 8 3x -4
N F—xt w8 oD
- =&+ D5+ x+ 1)8 ~ (3x - 4)
(2x - 8)(x + 1)
o X —5+8+8-3x+4
@x -3+ 1)
-
2x - &+ 1)

e me L s
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25. Equivalent Fractions.

Rule 1. .

If a fraction is obtained from a given fraction by multi-
plying both nurerator and denominator by the same numaber,
the two fractions are said to be equivalent. Thus § =
3.5 = 3% are equivalent, and a/b = a/b-e/ec = ac/be are,
equivalent. :
Rule 2. R\,

Tf a fraction is obtained from a given fraction by dividing
both numerator and denominator by the sa.meq}ulﬁber “n,”
the two fractions are equivalent. (The nuraber “n” must

not be zero.}
.\\,’
26. Products of Fractions. W
Rule 1. \V

The product of two orfimore fractions is a fraction
whose numerator is the product of the separate numerators
and whose denominatoriis the product of the separate de-
nominators. \"

Example 1: (ind the produet of % and §.

This maybe written 2-§or 3 X 4§, 3 -§ =4
oY .. 9 — 1 x*+ 5%

Exam&plé 2: Find the product 95 0x— 3

fd reduce the result to the lowest terms.
~,j’\®ne proceeds in such s problem by first writing each ex-

3" pression in factor form. Thus:

o —1 x4 6x_ @r—BHBx+1) xaB _xGxi D)
2 —25 9x—-3 (x— B)x4b8 3@x=B 3x-—5
This last step follows from the preceding form by dividing
both numerator and denominator by (3x — 1}(x -+ 5).
Note: A result involving fractions is said to be reduced to
fowest terms (or simplified) whenever all commeon factors
of the numerator and denominator have been removed by
actual division.
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27. Quotients of Fractions.

Before stating a rule for the quotient of two fractions, we
define what is meant by the réciproeal of a number.

Definition: The reciprocal of any number “a” is unity

divided by the number “a.” Thus, the reciprocal of 5 is 2,

the reciprocal of £ is 3. The formation of the reciprocal of g

fraction merely inverts the fraction. 2\

Rule. . N

RS

To divide one fraction by another, multiply the, ¥ dend
fraction by the reciprocal of the divisor fract'i({n.\"'

This tule results from the applicationof ‘the rule for
multiplication of fractions and of Equalityddom Number 3.
For, suppose that we let x representsthe :'quotient obtained
by dividing a/b by ¢/d. Thus: Y

| BN\
_ O
(A) X =
»:’.E
oY d

<

Multiply both membe‘i@df this équality by e/d.

e
®) ‘~\ 3 =£@ =

a,
SO b
a
Thep\,r?ﬁlf-iply both members of this last cquality by d/c.
& ¢ d a d '
Oie T % =29
' '\\” © a =X b e
'\,:',fl\But from relations (A) and (C) we have:
'"\;,,/ Y _ I
\ X =-E.»—- E‘ - C—{.
e b e
d

Hence the rule.

Example 1: Perform the indicated division l%aib_-’* = 8ab
o ac 15¢2
and simplify the result.
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.. 16a%b?® s
Solufion: Bac _ 1 fatb? 150"
Bab? Fac - Pab’
15¢%
Ba’hict
= e Gbe.
Example 2: Perform the division Q)
)_;_"'—51(4—6; x— 3 .\:\'
x4+ 5 'x”+8x—l—15_ \“\ ’
and simplify the result. R \
: ?—5x 4 6 x-—3~~’\§"
S H X Eead — =
olution: =2+ F T} b5
R—bx+6 ¥ +8x+15 _ xS E+Hx+3)
x-+ 5 x—3 2B *—3
= (x,’—'-,.Q)(x + 3)
= x84 x — 6.

This final result folloss*from the preceding one by making
use of produet type (E), Chapter IL
' ,z'\\
28. Complex Fraefions..

Dei:‘tni’cit_nr:zx JA complex fraction is one whose numerator or
denomina@of,,\di' both, consists of fractions.

Sugch ¢ actions are simplified whenever one has performed
all of the indicated operations. The steps in the simplifieation
are 'ﬁerformed in the following order. Tirst, perform the additions

. (08 subtractions; secondly, perform the indicated multiplications
S Yand divisions.

x—1
1+

Example 1: Simplify the fraction: <

1—x

Solution: The first step consists of performing the sub-
traction indicated in the numerator and the addition

indieated in the denominator.
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—(x - — 1
Thus: X 1 X -1 x—x+

x—1 -1  x-1
x (A—-x4+x 1-x+x
T+ 1—x I—x
1
_x=1 1 -1_X=-1
T 1 T x-1 1 LN
1—-x

» LN
(Note that x ~ 1 is contained in 1 — x rainus ong\fites, as
can be seen by multiplying x — 1 by —1.)

L 3

. 2 y? 1, By
Example 2: Simplify: oy . ( + )

Xy x mi )
Soluation : _ v/
X~y xt—y2 x.\\.f
Xy Xy _x’—..j?'{_".x-r = x — .
= = & = ¥. .
1,1 x4y & x+y
X y X}’ ".'.. -
The last step follows, jfi’ofn product form (C), Chapter II.
o 2 :
Ezample 3: Simplify: x — X a—
rh\ xg —
. o\*ﬁf}\ | 14
\ —

Sohution: Such a problem as this involves several sepa-

raté& steps. One begins the simplification by starting

/with the last indicated division and proceeding 1o

\each successive division, at the same time simplifying
‘§ each step in turn. Thus we begin by adding

™ 2
~O I+1=%
A% 1+.__i'>__=1—x+2=3~x_
l—x 1--_x 1___x ) -~
The next indicated step is to divide x bySoX
— X

__’E__.__x.(l"-x)__x-—x2
3—x 3~x  §—%x
-z

C thewia
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This result must be subtracted from %2

x--xg_x2(3—x)-—(x—x2)=3x2-x3—-x+x2

L 3 —x 3-x
_beexox_xlx—¥-1)
: 3—x 3—x
Now 2x must be divided by this last result.
2x G-w om0

T I R I VAR R e SO
3 —x :;’} “
. . ) A
Finally, this latest result must be subtraeted fror(x‘;; ¢
28 —x) x(dx — x2 - 1) — 2(8 — JL) &:}
dx —x2 —1 dx — x* — 1 \
éxz—x3-x—6+2x\\'
dx — x? — 1 ,\}\{}

e ks JQG X —-42—x+6
- —X2+4{($;3¢1 Toxt-d4x+1
\‘g‘
N\
K\ v
N\
L)
Ve D
2N/
\V
%)
QO
\w
O
AN
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\J/ Law 1, am.gn = goin,

Y

Cuarrer IV

EXPONENTS
- O
29. Definitions,

We begin a discussion of exponents by assuming that the
reader is familiar with the notation proposed in Chaptde I, Sec. 10. -

The symbol 2 means a - a-a. The index 3 ig*thé exponent,
which indicates the number of a's in the produét) On this basis _
we are in a position fo give the following deﬁﬁi}ion.

Definition: 'The symbol a®, where ) is a positive integer, -
represents the product of m factors 'e;uc\h of which is a. The
integer m is the index, or exponent, which represents the number of
fimes the base number *a” appears’ a¥'a factor.

Tlustration : o
a'=a-a-acara; 2=2-2.2=8§

30. Laws of Exponents

It is necessar{“:fﬁ)r us to understand the meaning of such ex-
pressions as 22 -\53, and to be able to evaluate such expressions.
This understanding follows at once from the definition of an
exponent Jand the definition of multiplication. Thus 22 . 2% =
(2-2- 2012 2) = 2° by definition.

be idea involved in this illustration ean be generalized, and
g%y'e} rise to a law of operation for use in the theory of exponents.

Proof: a™ a'=(a-a-a---a){a-a-a---a)

1k
= mfactors a, fo g;‘:ed n factors a,
oratotal of m + 1 factors a.
Hence by the definition of cxponent = gutn,
This law may be stated in words as follows: “The

product of two different powers of the same nuinber -
28
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{or basc) is equal to the base number raised to a
power which is the sum of the exponents.”’
By extgnding this law to a product of three or more com-
poncnts we arrive at such CXPressions as:
am™ - a” - af = amirhr ete.

Fxamples: 23-2¢= 2V = 27 = 128.

¥ -x3 = 2 = X8

N
Law 2. (a=)® = a™". o R
O
& \N
Proof: By definition this means e\
(a‘m)n = nm.gm. am oo e a_m X W
— . _ \/\.s
1 of these factors '”‘/\g.“
:(a.a,a_....a).(a.&‘a,.“-FE‘)....
(a-a-a-- - &)

= amn, since there are n suchz'ﬁéntheses each con-
taining m factors a; the total being mn factors a.
Txamples: (293 = 28 3% = 64,
(x%)? = 82 = x*

Law 3. (a) {a-b‘}f}l’;;:-‘anb“.
Proof: (o ;¢ = (ab)(ab) (ab) . . . (ab)
O

n such factors

(by defwttion).
Omyredrranging the letters of this product by writing
Hivet the n factors “a,” followed by the n factors “b,”
:“<;\§'e have:
@b‘jﬁs(a-a-ag----‘a)(b-b-b ...... b)

R = b,

Example: (2x)° = 2 - x* = 8x%

(b) (a.b.c ..... )n-_-;a“.bn.cn .....
This means that Law 3 can be extended to cover any
finite number of factors.

Law 4. (a) 27 amm, If m i¢ greater than n.
all
(b L —nlj_; If n is greater than m.

a° a
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Proof of (a). Consider first an illustration where
m and n are definite integers, such as:

a? ,a’ A-a-a-a
2 A
denominator will cancel an equal number of a's in
the numerator and leave & residual number of factors
namely 5 — 2 = 3,

= 8% = a? since the a’s in the

_fa-a-a - ... tomfa-ctor_s)"\_
T aa-a - - tonfagz{écs) -

3™=2, and as noted above n of these fac&o}s cancel
leaving m — n factors “a’”” in the nur@emtar

Case (b). The proof of this case ;s Jsimilar to that
for case (a) with the exception that\the m factors of
the numerator cancel o, like nuthbet of the denomina-
tor leaving n — m factorg' i"az\om the denominator.

In general

5 00. Nt
Examples: g—s = Z?j??\= 2 =
N1 1
.‘;;‘s T ot T a5
P I R
¢ BT Ty

Law 6. (§¥\= L

Proof Again by definition of an exponent,

F-000 ) Tont]

~." By the rule for the Product of fractions, Sec. 26, we
S have: (E) {a a a —--4‘—54) - &
~O b (b- ~b) b
N\ A
L - ey — S
xamples (3) 5= g
(233)2' (1)_ (3273 onpt ¥ 3%t
b/ " \6a (T:.) W R w
4-270%  3al
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31. Negative Exponents.

In the discussion of Law 4 for positive exponents we had to
make a distinetion of two cases depending on whether m was greater
or less than n. This restriction can he removed if we allow our-
selves the use of negative exponents, and assume that the first part
of law 4 holds whether m is greater than or less than n.  'With thls

3
removal of restrictions Law 4{a) glves— = a**% = g% but thls has
been shown in the second example under Law 4 to be alsa gq‘us\tl to

1 1
—- Hernce Prieg a~%, and we may extend our notmn,@f}‘exponents
N

at "
in keeping with this result. We now have '\‘{.’
Law 6. a® = 1 or —;1-; = an, v
ar»  a AN
Another way of expressing LMV‘G is to say that any
faetor may be changed from the‘nu‘hrlerator into the denomi-
nator, or vice versa, pr0v1ded one changes the sign of the
exponent. N
32. Zero Exponent, _ "\
Using the base Jal Nag any quantity except zero, we now

examine the case u{é{er‘l;&w 4 where m = n.

if Law 4 lﬂ sto hold, then we must have ;3._ = gt a = al,
N

But smce é}ﬂy quantity divided by iteelf is umty, we have g— =1.
Conseﬁuently, it follows that — = a® = 1, (By Axiom 5, Sec. 14.)
) "\ Consequently, we deﬁne
O Law 7. a’=1, if a = 0.
Tllustration 1.

3 =1
TNiustration 2.

Bx) =1

Mustration 3.

3xt = 3.
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The reader’s attention is called to the fact that the last two
illustrations are quite different. In the ease (3x)%, the entire
product 3x is raised to the zero power, thus having the value 1 for
all values of x which are different from zero, (Forif x = 0, then
the base 3x becomes 0, and this case was barred throughout our
discussion. The case where the hase is zero leads to the question
of indeterminate forms, a topic which requires some knowledgeraf
the theory of limits, and which is usually discussed in considerable
detail in a course in caleulus.) RAY;

For the last illustration 3%, we must note that thé.x only is
raised to the zero power. Consequently, we have 3x=3.1 =3
The student should exert care to distinguish bettyeen these two

cases in solving problems. They are but spég\l‘al cases of the
following: '

A\
Tlustration 4. \’ O
(2%)* = 28 . x8 = 8x?, N
Hlustration &, o\
2% = 2.x9, N

™
Y

83. Fractional Exponents,

The seven laws of é:ponents also apply in case the exponents
are fractions. In ¥his present chapter, we shall illustrate only how
these laws apply“to fractional exponents.
disenssion of, the relation between fraction
traction of;tests, see Chapter V.

For a more complete

'\
stration 1.
W\ By Law 1.

4 \ a2, a8/ = 2B +8e g 8M2+on2 al?flz‘

4 Tlustration g,
By Law 2,

(a28)%t = gasm _gp _ af/m = gip

Dlustration 3.
a2 13
e

1

al,l’l2
{By Law 4 followed by Law 6.)

= a8 =84 — paz—spp _ a—1/s

al exponents and ex- ~
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The student should note that in applying the laws of ex-
ponents to cases in which the exponents are fractions, care
must be taken to apply the rules for combining fractions as
given in Chapter I1I.

A\
W
D
&



CHAPTER V
RADICALS

34, Introduction. ' QO
-An expression such as V'3, is-called a radical. The nufabeér n

"is called the index, and the number a is called the raditand,

a

If the index n = 2, then /3 is ealled the SquaTe, f'bot of a. -
Usually the index 2 is omitted, and the expregsion 'is simply
written V5. AN\

Definition 1: The square root of 4 niaBer a is that value
which multiplied by itself gives a product equal to a.
Definition 2: The cube root of & Humber a s that value

which used three times as a #aptor gives a product equal
to a. \ o :

In general V3, representg,?ﬁ{é b root of & number a.
Definition 3: Two radicals are said to be the same if they
have the same index and radicand. ’

Definition 4: f[\&;o radieals are said to be similar if, upon

reduction t&%@ieif simplest form, their radicals are the same.
Thus and V2 are similar radicals, but V'2 and

3 & SN . - ]
2 are-siot similar, since the indices are different. - Also

2 'qui\@ are not similar, since the radicands are different.

35. Prificipal Roots,
'f.:BY the n® root of a number “a” we mean s number whose

fte

that a number hag n, n*® roots) For OUr purposes we must restrict

our notation in order that we may pick & particular root of a
given number., . :

If n is an odd integer and a is & real number, then there is
only one real nth root, Thus, V§ = 2, V33 = —2. We de-
34 .
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fine va under these circumstances to be this real n*® root and
call it the principal n'® root,

If n is an even integer and a is a pomtlve number, then & has
two real ntk roots. Thus, V16 = +2, —V/16 = —~2. We define
the positive one of these roots to be the principal value. In crder
to indicate the negative root we must affix the — sign to the
radieal.

If n is an even integer and a is a negative number there ares
no real roots.  See Chapter XVIL

Agreement. When we write V16 16, as above, we shal]
mean +2. If we wish to indicate the negative root, #@ shall
write — v 16. On occasion, we may wish to 1ndlcate both
values, in which case we shall write X2, tQ dndicate the
dual choice.

36. Relatmns between Radicals and Expon&ts

Recalling the theory of exponents,, we\have
ali. gl = amq—ue = n.

But in the present chapter'we have defined: Va - \/E = a.
If both these statements Bre "to be true, one must identify a2
with \/a, by agreeing that allt =g, By a similar argument
alfd . alft . gltt = g, Al{so\\/a, v'a Va = a Hence we agree
that al = Va. Thas We see - .that a generalization would lead
to the statement™\
K2 alm = Va,
“This equatign allows one to establish the laws of radicals from the
laws of e{’b}fﬁents.

37 The Laws of Radicals.
\ By definition (¥a)® = a. This could also be arrived at from
\the laws of exponents. For, {/a can be written a¥®. Then by
Law 2 of exponents, (al/m)® = ar/® = a, giving therefore
Law 1. _
(Va)» = a
Dlustrations. —
(V5 = 5.
(v —8p = -8
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In order to find an expression for Va - Vb, we first
write an equivalent expression in exponent form, al/» bl
By Law 3 of exponents, al®-bY® = (ab)= Rewriting
this last result as vab of the radical notation, we have,

Law 2. Va - Vb = Vab.
Mustration. B
v2.v5 = V10. 2\
To find an expression for Q/'{*ng we writefgg;m:
(arimyum = glme = "0/ Hence by the use of L&y 2°of ex-

ponents we have, _ \m.”s
Law 3. VVa=Va LY
THostration. i

V5 = w?/E,,j\\
ﬂ .
To find an expressmn for 7_ we write this in terms

of exponents and appl;,& La.w 5 of exponents. This,

R N
\"/5\_ b= (b) - \/ b

Consequeq{tibr, we have,

‘\/5. hlg
Law 42 = &
) ¢ N4 b b
Dfgéation,
A Vo 30
'\ — n_
) V5 “Ng T V2

- Finally, we find an cxpression for ~aP.
.{l/au - (an)ua - a‘nm’
and we have,
Law 6. aP = gPn,

This Law 5 tells us that the numerator p of a fractional
exponent indicates the power to which a is to be raised,

and that the denominator q indicates the root to be ex-
tracted.
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Tilustration.

\3/§=\f364=40r
G = (VR = 22 =4,

Usually, one extracts the root before raising to the
power, thus avoiding very large numbers in some instances.

38, Changes in the Radicand.
(a) Removing factors from the radieand. ) \ \J
Any factor which is a perfect n'® power can be removed

from the radicand as shown in the following illustrations.
V83 = VT = VE T = 3VT. a0
Vidxys = V 2Tyt 2x = SX}'\i/ 2%
(5) Introducing quantities under thq@éﬁcaﬂ. _

Any coefficient may be int:roﬁitfced under the radical
sign provided it is raised to a proper power corresponding to the
root, before being made a part of the radicand, Thus

5vVE = VE - V3 = V5= V75,
2abV/Tax = V2PV Tax = ~/8a%° - Tax = v/ 56atbx.
{c}: Making the\a\ﬁicand integral. :

If the. fadicand is a fraction, it may be made integral

by methods il@strated in the following examples,

Tlustrations.

A\ _
\]5_ 2 38_[6_Ve_lyg
V3 TABR3TNRE 3 3T

N N S e ey _
N N
2 2 8 B b=

Such procedure is called rationalizing the denominator
and will be treated in more detail Jater in this chapter. See
Sec. 43. ' .

(@) Reducing the index of the radical.
‘Many radicals may have the index reduced as shown

by the following examples.
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lustrations.
Fog = V3% = (3n¥t = B = 3x.
T = (B = (—B) = (=3 =V 5,
The changes involved in casesa, ¢, d, above are said to sim-
plify radieals. Thus we may sct up & get of rules known as:

Criterions for Simplifying Radicals. )
1. Remove all perfect n™ powers from the radiednd.

(See a.) O\

9. Make the radicand integral. (Seec) (Y -

3. Make the index of the radical as sm@llj:,a\s’ possible.
{Bee 4.) \ 3

Any radical so treated will then be in ‘sii;hi’ﬂ'est form.

39. Rational and Irrational Numbers. N

The process of extracting roots Qf‘:nﬁmbers leads us to a type
of number called irrational. But befere we ean define such num-
bers we must note the following\definitions.

Definition 1: A psimeé number is one which has only

itsell and unity as diyiSUi-s.
Tllusteation. 4
3, 5,7, 17,,616., are prime numbers.

Defmit} 2: Two numbers are said to be relatively
prin}e‘ if'they have no faetors in eommon. (The factor unity
is fﬂ,%ljgegarded since unity is a factor of every number.)
\:'"Fiustmtions.

A\ 3 and 11 are relatively prime.
5 and 9 are relatively prime although 9 itself is not a prime
pumber.

Definition 3: A rational number is one which can be
exPressed as the quotient of two integers which are rel tively
prime.

Hlustrations,

6 is a rational number, for 6 = 6/1.

8 ig a rational number, for it is such a quotient.
22 is a rational number, for 2§ = §.

.036 1s a rational number, for .036 = 3% = <24
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Definition 4: An irrational pumber is a real number
which is not rational.

Tllustrations.

V2, v 2_, v/ g, v 5, 14+ /6, ete. are all jrrational numbers,

for none of them can be expressed as the guotient of two

relatively prime integers. Tt is not always an eagy fask

to prove that a given number is irrational. However V2

is easily proved to be an jrrational number. A proof is
given in the appendix, see P 205. O\
In the preceding section we talked about the process of ration=
alizing the denominator of a fractional radical form. We. sgé now
that such a procedure simply means that we make the gigriordin ator
a rational number. The process also leads to a distinet advantage
when cvaluating the numerical value in terms d\decimals, as is

showa in the following example. ) N

Tliustration. ' - ,",\“

NN

Evaluate \_.}E to three decitqg.}:pis:(;es.

This can be done di}'}a’éﬁfy by dividing unity by 1.414,

but the process involyesNong division. On the other hand
1N Ve Va2

wemay write—Z ¥ = = T 4 o ig 1is -

y - Va3 V2 Vi 5 This is ap

proximatqu’}‘t t_ 707 and involves only gimple divi-
A</

SiO'ﬂZ\,\"?'Ffle reader may verify that —1%12 also gives .707.
R4 \Consequently, one slways rationalizes the denominator
' \.f of fractional forms involving radicals before evaluating the
~\J form asa decimal.

) 2

40. Addition and Subtraction of Radicals.
Similar Tadicals may be added or subtracted the same as any
other algebraic quantities.
Iifustration 1. . -
V3 4 5V — VB = (6 +5 - V2= V2.

(If the sequence of terms all invoive the same radicand,
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the sums and differences of the coefficients are obtained
and the result is then multiplied by the common radical
factor.)

If the radicals involved do not have the same radicand,
the sum or differonce may be obtained provided the sim-
plification of the radicals reduces all of them to forms
involving a common radicand. Thus,

"\
THustration 2. _ ) A
Va4 VARD? — Bav @ = K\
3abv/ab + 2bVab — 627V ah = A
(3ab + 2b — 6a2)Vah, .

Dissimilar radicals cannot be added‘.}\}_l‘he most tl:gat-
one can do is to indicate the sum. Thud V3 — v5 + V3
cannot be further combined. Yy Ny

-
41, Radicals of Different Indices, AV .
Radicals of different indiegs’:i’:na-y be reduced to radicals of
the same index. The commoniindex for the several radieals is

S

chosen to be the L.C.M. of the given indices.
Nllustration 1. \

V=R W
Wnt-e v 2,.@’\7 5 as radicals of the same index. The
indices are '3, and 4; their L.C.M. is 12, go that each
may be.expressed as a radical of index 12:

VZERE - ovn - F L e

\i/}f'.__ R L S VTR orry
\\/‘gz 5U% = 531t = /B = R/105

It should be pointed out that v/3 and V/64 are not
cquivalent in every respect. The v/3 has two roots, the
/64 has 12 roots, as we shall see in Chapter XVI1I, on the
Theory of Equaticns. Among the 12 values in this second
cagse there are the two Square roots of 2. The principal
value in either case would he the same.

It should also be noted that in the first iflustration of =
part {(d), Sce. 38, we had V0x = v3x. The firet part
involves 4 fourth roots, the second 2 square roots which



RADICALS 41

are among the four roots of the left hand member. How-
ever, since the expressions involve 5 variable quantity x,

one notes that if x = —1, the left member gives V9, and
has a real root, but 4/ 3 has no real roots. (See Chapter
XVIL)

Therefore, in e¢hanging the index of a radical, care must
be exercised to choose particular roots for which both
expressions are true and equal.  In the above example the
values of the variable x must be limited therefore to 08I~
tive values, if some pair of roots are to be equal.

Reduction of radieals to the same index also helps answer

such questions as:
Is V32 greater or less than V181 18\1?

If one should extract the roots in each casé\be three decimal
places, obtaining in each case 5.656, it m;g sappear that these
values are tho same. However, if one (rites V32 as V3P =
/32768 and V181 a5 VI81% = v/ 32760, then the question is easily
settled ; for one recognizes at a glanee that since 32768 is greater
than 32761, then V/32 is greater than “I81. As a matter of faet,
these roots differ only slightly, 1 i the fourth decimal place, being
respectively 5.6567 and 5.6566:

\
42, Products of Radngalé

To find the pmduct of two or more radicals of the same index,
multiply the co&mments to obtain the coefficient of the preduct,
and mulmplvxthe radicals by means of Va - Vb = Vab to obtain
the ra,ch({l})f the product.

+ S

R Dinstrations.
O @) 2vE3vz = sV
" (2 5V2.6VE = 30V16 = 120. (Note that the prod-
uet of two or more radicals may be a rational quantity, as
in this example.) o
To find the product of two or more radicals of different indices,
first reduce to radicals of the same index and proceed as above.

Miusteation.

32 . 5V3 = 3V/4 - 5V/27 = 15V108.
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43. Division of Radicals.

This section will be divided info two parts. The procedure
will be shown by examples.
Part A. Bimple Expressions.
Tiiustration 1.

Perform the division —6-

V3 QO
. . 6 V3 5vV3E O
ThlS we write as ‘\_/§ - ‘»75 = —g— = 2'\/§ . \“\ ”
Tustration 2. . K ":}:
... 5 E (O
2 1 ~\
Szmphfy.\[ﬁ : \/8 _
—_— é - ‘::\\':
5, [15_ 3_\/;&,&;*@_3
6° V8§ 13 N6 a5v No~ F
R -
Rule: The indica@epi:‘ﬂivision%l_( can always he per-

formed by multiplying“both numerator and denominator by
vk, leaving the résult with a rational denominator.
Definition; \ When two binomial expressions involving
radicals diﬁpt\only in the sign between the terms, they are
called copjugate. Thus, Va + Vb and Va — v/ b are each
the conjugate of the other. Also, 2 +V3 and 2 — V3 are
each:ﬁaé' conjugabe of the other. :
R%'j;\B Compound Expressions,

A\ Dustration 3.

Re Perform the division —' ..
\'\; 5~ 3V2
This division is performed by rationalizing the denomi-
nator, To. do this, multiply both numerator and denominator
by the conjugate of 5§ — 3V'2, and simplify the resuli.

Thus,
7 .5+3\/_§=7_(5+3\/§)_7(5+3\/§)'
5—-3V2 5+3V2 25—-18 T 7

=5+ 3V2.
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Hinstration 4.
3xﬁ

* Vs o+ \f
nominator.
3VE - Vi _3v5-v3 VE-2v3
V5+2v3 VE+2v3 V5-—2V3

Writ in an equivalent form with rational de-

N
3:5-6V15-V15+2-3
- 5 — 12 R\
N
_a ~—_7\/la _VIi_3. RN
i + s
Rule: I al [ the. ¥ 1%1 z
n gener &n expresswn O e« 10 \/_ + '\/h

may be rationalized by multiplying botbQupmerator and de

nominator by the conjugate of the expkessmn in the denom-
inator of the given quotient. P\

If three or more radicals, appear in the denominator,

cne may proceed to ratmnahze by first grouping the terms

and applymg the general prmclp]e two or more times. Thus

N " \/b — m&y be wntten \/B) a,nd
the ratmnahzzK ifxaf’ctt:)r a4+ v b) + \/ ¢ applied. Th]ﬁ
will reduee the form to one containing but two radicsals,
and then ;zrewous rules will apply.

44, Equatmn'?.\ ﬁ:wolvmg Radicals.

A di \eus'swn of such equations will be found in Chapter XII,
Bec, 88
:"\"
O

\ 3




CuAPTER Y1

RATIO, PROPORTION, AND VARIATION
N
45. Ratio and Proportion,
In elementary algebra znd geometry we studied, the thenry
of ratic and proportion. We list now some of the ba’sm ideas in
order to prepare the way for the study of varla,twn

Definition 1: The ratio of two qua,nmt‘ies a to b is the
quotient a + b, or a : b, or a/b. (Wedshall use the last
notation.) N

Definition 2: A proportion 1s\the equality of two ratios.

Thus a/b = ¢/d is a pi'oportlon

In this proportion:

\

1) b and ¢ are, };alled the means,

2) aand dvci?é called the extremes:

3) dis cal]od the fourth proportional to a, b, and c.
4) IfJx— ¢ then a/c = ¢/d and ¢ is called the
m%ﬂ\proportwnal between a and d.

Two impgrsant facts should be noted. If a/b = 3/4, this
does not medh that a = 3 and b = 4. In fact, we might have
a =9, b= 12, or any other set of values which may be reduced
to t ftactlon 3/4.

¢ ratio of two quantities does not. change if both quantities
&r’e measured in the saroe units. TFor example, the ratio of 3 feet
~ “\to 1 foot is the same as the ratio of 36 inches to 12 inches.

46, Properties of Proportions.
If a/b = ¢/d, then
1) ad =be. (The product of the means = product of
the extremes,)
2) a/e=h/d. (By alternation.)
8y at+b _ ¢ctd
b d
- 44
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This is obtained as follows: add 1 to each side of the

given proportion: a/b + 1 =¢/d + 1. Reducing

to a commen denominator gives {(3).

a—b c¢—d (Hint: subtract 1 from each side,
b~ d efe.)

a+b e-+d

a—b e-—d

4

5)

(By dividing 3 by 4.}

47. Variation. '\\
Let us consider a special case of propomon where y/x =%/1,
or more simply yv/x = k.
Now suppose that x and y are allowed Lo vary and that kis
a constant. If y has the value 2 and x the valye, then k = 2.
If now we wish to keep k = 2, and let x add\y vary, x must
incresse when y increases and deecrease w hexk\}’ decreases. That
is, they must vary in the same way. C%uch ‘a type of variation ig
called direct. ¢
Definition 1: If xand y are, va‘.rlables and k is a constant,
then y/x = k or y = kx represents direct variation. k is
-called the factor of prOporﬁ’bﬁﬁlity.
Definition 2: If y varies directly as x*, then y = kx».
To say that y varied Wirectly as x%, says that y = kx®. It
does not determine the\actor of propertionality k. If however,
one pair of values ‘05\.\' and y are known, k can be determined.
Thus, if y = 27 wheén x = 3, then 27 = k3* or 27 = 9kand k = 3.
¥y = 3x%, give§\{He exact relationship between x and y. From
y = 3% On.e\'@n now deduce additional pairs of values by assign-
ing Valu%to x and eomputing the corresponding values of y.
efinition 3: A variable y is said to vary inversely asx,
~if5:y- kory = k/x.
\M; N Definition 4: If three variables x, v, and 2 are so related
that z = kxy, then z is said to vary jointly as x and y.
Definition 5: If three variables are so related that

™

= k%, then z is said to vary directly as y and inversely as x.

Tltustration 1.
The intensity I of illumination varies inversely as the square
of the distance d from the source of light. If the intensity
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at a distance of 2 feet iz 100 candle power, what is the
intengity at a distance of 3 feet?

Solution: First one must state the variation as I = k/dz
Sinee I = 100 when d = 2, 100 = k/4. This gives k = 400
and I = 400/d2. To find I when d = 3, one has I = 400/9
= 44% _

Mlustration 2. ) N\

The safe load L for a horizontal beam supported\at both
ends varies jointly as the breadth & and the squal‘e of the

. depth d, and inversely as the length I between supports.
- If a 2 by 6 inch beam 10 feet long safely” ‘Supports 1000
pounds, what is the safe load for a 2 Q}( 4 inch beam 12

feet long?
Solution: By the statement efythe law of variation,
bd? O k.2.36 .
L=k 7 For the given data:~1xﬂ00 =70 This gives
1,250 O ,
k= 9 %0 that the complete variation formula is
1,250 bd2 3%
L==9"7 N\
For the 12 footheam, L. = 1’350 2(1126) - 10;;00 = 370%%-

48. Summary of Procedure,

Four step% are essential in the solution of problems dealing
with vsma’uon

a“}‘ "Write an equation representing the type of variations
iven by the problem.

R\ ) Use the data of the problem to determine the value of k,
~\.J the factor of proportionality.

\/ ¢} Write the explicit formula for the variation, using the
computed value of k,

d) Find additional value or valyes using this formula.

N,



Cuaprer VII
GRAPHS AND FUNCTIONS

49, Introduction.

In the preceding chapter we saw that there are certain eln
tionships in the form of equations expressing variation, whieh have
the property that from them sets of related values piay\be com-
puted hy assigning values to one or more of the vaf'@bies involved.
In the present chapter we shall examine the yamation between
variable quantities from a graphical point of\view.

A

5O. Charts of Data and Graphs. x\

A

Oftentiroes a pictorial account, of data presents facts.in a form
more easily comprehended than'is usually possible from a mere
listing of the data. Fo]Io“?ing"is"an' example.

During the month of July, 1940, the approximate number

of workerson the pay., Ly 3 0 ' o4

rolls of an org n@a—- ' '

tion were as follows: 171

it

July 3—1,611,000 790
July 104,619,000 1680 /
July, X75-1,659,000 1,640
July'24—1,689,000 1,670 : /
July 311700000 /
“\“ This same informa- 150
tion can be displayed 4 /

graphically as shown in
the adjoinibg graph, Fig.
1. This graph shows at
a glance the period of 181
greatest increase (July Mouund
10-17), as well as the , Fig. 1

4 .
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fact that during the first and last weeks the increase was approxi-

mately the same. . o

" Sumetimes data are represented in the form of a “bar’” graph.
Consider, for example, the fol-

1o . lowing data.

o0} In a eertain household, the

o expenses may be classiﬁed: as
: - follows: Foods, 209, Clot}urﬁ,
” 16%, Shelter, Heat, and“Light,
50

18%, Insurance ands Savings
% 119, Taxes, 10%; All others
' _ (Auto, Health, Recreation, Be-
nevolence, etic), 16%. These
data are displayed ona bar type
v graph in Big. 2.

- i graphical display does
ngt show the relative distribu-
 tiot 80 well as does a circular
arrangement in which the whold eircle Tepresents 100

Ins. and Savings

Sheler, eie.

For the circular 3% "
chart see Fig, 3. N\
Numercus othex
graphical schemes may 4 167, 099 e
- be used,* but if‘eon- Clothing  Fed
nection with a\course
in algebrawe shall or-
dinarily'.x{se’ & rectan- 5o 18, 1%
gular goordinate system Lighslb:nl::;‘!eal H 1657
andedraw the graphical | HH ”\é%' Expensas
representation of i _:,oigxl,'fs//
¢ 'Bﬁuations. £0 B — 5 PR / 90
. Jot. and Sevings

N
k3
\ 3

51. A Coordinate Sys-
tem,

e B

70 =50
We consider now a  Fig. 3

device which will enable us to picture
number pairs and the points of the plane
must make the following assumptions:

the relationship between
- Inorder to do this, we

* Bee: College Outline Sevies: An Outline of Statistical Methods, Arkin and
Colton, Chap. XVIII. (3rd ed.).
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1. We have given two straight lines X X’ and Y Y’, per-
pendicular to each other, and intersecting in a point O.

2. We must choose a convenient distance which will be con-
sidered the unit of measure. :

The two lines are called the x-axis and y-axis, respectively.
(S8ee Fig. 4) Their point of intersection is called the origin. We

¥
]
4 Cluadrant N
[ ! oA\
3 NS ©
4,9 W
X S IR
1 <
1 ; AN
' . A,
. i NN
X -5 —4 -3 -7 -1 127 3 4\% s
-1 \
2 4 "\\'
I NCH\“
-3t 7N
—4t 0
Qommmme -5
Ny
Fig. 4

&
further agree that s cééss:ive unit distances will be laid off from
the origin along egeh Axis, and thus a scale of measure is estab-
lished. .\“'." .

The posi {ve values are to the right of the origin along the
x-axis, and-above the origin along the y-axis.

N&g&bﬁre values are laid off to the left along the x-axis, and
belowathe origin along the y-axis.

. The plane now is divided into four regions called quadrants;
“ushally numbered as shown,

Any point, such as P in the figure, can be designated by giving
values of x and y, called the x-coordinate (or abscissa) and the
y-coordinate (or ordinate) of the point. . In the figure, P is desig-
nated by x = 4, y = 2, usually written (4, 2). A point is desig-
nated by a number pair (x, y). Note that the x value is always
given first, then the vy value. Algo in the figure, the point Q has
the coordinates (—3, —5).
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By mesns of this coordinate system we have set up a corre-
spondence such that for every point of the plane there is a partic- -
ular number pair (x, y) which describes its location. Conversely,
to every number pair (x, y) there corresponds a position in the
plane. This is called a rectangular coordinate system.

52. Functions.

In Chapter VI, 8ec. 47, we discussed the variation givén'by
the equation y = 2x. In this particular equation, x and"y are 8o
related to one another that if we assign a value to x,a definite
value of y is thereby determined. Furthermore, each’and every
value assigned to x definitely determines a corresponding value of
y. This ides may be generalized as is now done in the following
definition. \/ _
Definition 1: If a variable y ig'rélated to a variable x in
such a way that each assignment ©f a value to x definitely
determines one or more valueg'6fy, then y is called a function
of x, .\,
"Thus theearea of a eitdle is a function of its radius, for
A = =%, and each assignment of a value to r definitely deter-
mines a value of the-grea.
Definition 2« \The variable to which values are assigned
i called the i;ui&endent variable. ‘The variable whose value -
is thereby determined is called the dependent variable.
Rather obvious extensions of these ideas can be made to situ-
ations involving three or more variable quantities. Thus z = 4xy» .
expresses the fact that z is a variable depending upon the two

indegéndent variables x and y. We say that z is a funetion of
bath'x and y. : '

N B3. TFunctional Notation. :
Rather than use words and sentences to express the definition
which we gave for “function,” we usnally write y = f(x). Thisis
read, “y is & function of x.”
Suppose that y is some particular function of %, say x* — bX
+ 6. This may be written y=%fx =x2—5x 4+ 6. When x
equals zero, y has the value 6. When x — 2, theny = 0. When
X = —3, theny = 30. If we understand that f (2) represents the
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value of this particular function when x has the value 2, then we
may uge our notation to express this fact. Thus, if

fx) =y =x*— bx+ 6,
then f(2)=y=22-52+4+6=0.
Furthermore f(0) =6

f(—3) = 30.
If 7 = x! — 3xy + =%y + y% we may write
- a=1(x,y) = = - 3xy + ¥y + ¥, N
and z=1(0,2) =4, N

also z=1f(—1,2) =9 S \)

Whenever two or more functions are used in the sa.r',m; prob-
lem, one usually represents them by different functi,oﬁél symbols.
Thus, if there are two functionsy = x* — 5x + G,a@d\y =x —4,
we may represent the first funetion by {(x), the gecond by F(x),
in order to distinguish between them. Ansalternative notation
would be to represent the first function. By f(x) and the second
by ¢(x). (¢ is the corresponding Greek Jetter phi.) Still another
representation would be £i(x) and.fi(x}, where the subscripts 1
and 2 identify the particular fungtions. :

Example 1: Expressin functional notation the fact that
the aren (A) of a triagele is a function of its base (b) and
height (h). O

™

Solution %e could write simply A = f(b,h). But
from our kgdwiedge of plane geometry we know that the
ares of a &riangle equals one half the produet of the base by
the height, so that A = 3bh.

~ )”(ampie 2: If f(x) = 32 — 5 and F(x) = x + 4, find

~COthe values of £(2) ~ F(1) and also (=D,
N/ F(2)
Solution: £(2) =3-2~5="7andF(1) =1+ 4 = 5,
Therefore {(2) — F(1) =7 -5 =2.-
Also, f(—1) = 3(—1)* — 5 = —2 and
. F@) =2+4=6.
(D _=2_

Therefore F(2) B B
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54. Graphical Representation of Functions.

Consider the equation y = f(x) = 2x, and compute & chart
of values for f(x) as shown below.

x | =3[ -2|-1j 01|23 |
y=t|—6|-4|-2| 0| 2] a6 |

: . . N
If the pairs of values x and f(x), or simply (x, ¥), are interpreted
: : as points, then we héve a set

6” of pairg of valugsywhich we

may plot as shown in Fig. 5-
5 . Other values\nmay also be
4 (24 computedand plotted, but
3 this we\shall not do. How-
-3 A evernit is important for us

46 fealize that points may be

M obtained for as many values
=N

\ the values x = 1 and x = 2.
O In analytic geometry, it is
’ shown that all such points

degree in two variables lie on
a straight line. Consequently,
-3-0 (}-6 ' if we join the points found

P\ 'Fig. 5 above by a line, we say that

7, we have drawn the graph of

the @hﬁon. Sometimes we say that we have drawn the locus
of the'equation. By definition, the locus consists of the totality

ofthose, and only those, points whose coordinates satisfy the
{given equation, .

65. Aids in Graphing.

The graph of any function may be obtained by simply plot-
ting points. These points may be determined by substituting
values of x and computing f(x} from the given functions. The
pairs of values thus found may be plotted on a coordinate system
fmd then joined by a smooth eurve. In general, such s procedure
18 tedious, =0 that further facts aside from points of the curve are

4
g

2 73 4 \" “as one pleases between say B

\ for an equation of the first
3

s

L

;
E
i
#
i

A LT K s A

e IR PR

;
!
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very helpful. Consequently one usually proceeds to analyze a
given function from the standpoint of intercepts, symmetry, ex- -
tent and excluded values, and asymptotes. These special terms
will now be considered separately and each will be illustrated.

(A} Intercepts. The intercepts of a curve are the points
at which the curve cuts the axes. Since all points on the x-axis
have y equal to zero, the x-intercepts may be obtained by setting
¥ = O in the equation of the ecurve. The y-intercepts are simi
larly determined by setting x = 0. ~ \

(B) Symmetry. The points (3, 4) and (3, —4) are &ym-
metrically located with respect to the x-axis. The points.(2, 5)
and (—2, 5) are symmetric with respect to the y-axis. {The points
(5, 3) and (—5, —3) are symmetric with respect to the origin.

_ In general a curve is symmetric with respeét to the x-axis if
the points (%, y) and (x, —y) both satisfy its equation. A curve
is gymmetric with respect to the y-axis if (x,l}b' and {-—x, ¥) both
satisfy its equation. A curve is symmetric with respect to the
origin if (%, y) and {—=x, —y) both saisfy its equation.

(C) Extent and Excluded Values. Sometimes a funetion -
has no real value for a given value of the independent variable.
Such a value for the independent variable is called an excluded
value. If, for all the valués from x = a to x = b, there are no
corresponding values for-y, then the region of the plane between
& and b is called an’\Qxcluded region. The presence of such re-
gions for some funetions naturally limits the extent of the graph
of the function.(”These excluded values usually arise from the
fact that for a'given value of x, the value of y involves the square
root of a _népative number. This would mean that the value of y
is not ;2&.\" '

(B)" Asymptotes. For our purpose here, we shall set up a
restricted definition of an asymptote. Suppose that a given

“straight line is so situated with respect to a curve, that a point
moving along the curve always approaches the line indefinitely
{yet never reaches it} and at the same time the point is receding
from the origin. Buch a line iz called an asymptote of the curve.*
We ghall be interested only in the horizontal and vertical asymp-
totes of curves at this time.,

* The general definition of ssymptote depends upon the limiting process
83 used in caleulus and generally occurs in a course in the caleutus.
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Tllustration 1.

Discuss and draw the graph of y = x%.  Substituting x =
—x in the equation gives y = (~x)? = x?, thus leaving it
unchanged; therefore the graph is
i "~ symmetrical with respect to the
f y-axis. If one replaces y by —y,
the equation is changed into, —y
= x% and consequently thereje no
symmetry with respeet,fonthe x-
| - axis. The x and y intercépts are
at the origin, since.x =0 gives y
= 0 and conversely. ’
The value of'y 8 definitely determ-

ined for every positive or negative
value of; X and is always positive.

e 45— They vilue increases with an in-

creasein the value of x.  Since no
f _«eal value of x can make y negative,
] ) hone of the curve lies below the x-

) W\ axis, and that region is excluded.
Fig. 6 N i

W, By examining y for s few values
of x, and making use of the facts shown above, especially
the symmietry aspect, one obtains a graph as shown in Fig. 6.
SRR RN RN
NS
O ylo 1 e o]
:Igjafi‘straﬁon 2.
L\ Discuss and draw the graph of y = %8, The curve passes
*  through the origin, since x = 0 givesy = 0. The tests for
symmetry show that it is not symmetric with respect to
either axis. However, x = —x and ¥ = —y gives —y =
(=x)* = —x* which is equivalent to v = x* and the curve
1s symmetric with respect to the origin. Sinee ¥ is positive
if x is positive, and y is negative if x is negative, the entire
graph lies in the first and third quadrants. The second and
fourth quadrants constitute the excluded regions. By
finding coordinates of g few points of the curve for first
quadrant values, and making use of the symmetry with re-
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speet to the origin, one obtains the curve which appears in

Fig. 7.

Tllustration 3.

Discuss and draw the graph
of xy = 1. This may be written
¥y = 1/x.  Applying the tests
for symmetry, we find it to be
symmetric with respect te the
origin. If x is positive, o0 is
¥, and this coupled with the
fact that the function is sym-
metric with respect to the

origin shows us that the second

and fourth quadrants are ex-

-3 % =1

N
x\‘

X

N W

cluded regions. When one, ™

assigns X = 0 to ascertain they

y-intercept, the y value ja’ﬁ'o‘t
defined since division byszero
is undefined. (See<Sec. 6.)
Consequently, , se) " examine
what happens\\when X ap-
proaches zem; ns shown in the
following chart.

|

Fig. 7

1 I 01 ] 001 | .00001 | etc.

ol 1 | 10 | 100 | 1000 | 100000 |

~We see that as x gets continually smaller {yet not actually

NN

N\

\ W
4

‘taking the valuie zero), the values of y increase indefinitely.
This means that the y-axis is a vertical asymptote. If we
write the equation in the form x = 1/y, we see that the
x-axis is a horizontal asymptote. The graph may now be
obtained by finding a few more points of the curve as now

shown.

|

<
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The curve ig as shown in Fig. 8.

{
0’. o2 )
5 10 AN
. « N/
-
: N\

&/
\~“\\
—1g :',\\'
A\
Fig. 8>
Iltustration 4. g

Discuss and draw t,h&gi'aph of x* + y® = 25, This curve
is symmetrical with
respect to both axes
and to the origin, If
x = 0, y* = 25, s0 that
v = 45 and the y-
intercepts are +5 and
—35. Likewise its x-
intercepts are ==8. If
we write the eguation
ag y? = 25 — ¥, S0
that y = V25 — 2,
we see that no value
of x which is greater
than 5 will give a real
value to y. Since the
sum of the squares of
' Fig. 9 xand y is always equal :

to 25, the locus is & &

circle of radius 5 and center at the origin. See Fig. &

1% e T
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Nlustration 6.

x 43
2~ 4
y = —3% and this is the only y-intercept. If y = 0, x =
—3 and this i the only x-intercept. The curve is not
symmetric with respect to either axis or the origin.

There are two values which will cause the denominator to
vanish, namely x = 2 and x = —2. Consequently the lines®
x = 2and x = — 2 are each vertical asymptotes. The giyen
equation may be written yx? — x — (4y + 3) = 0. If thisis
golved for x by the quadratlc formula (see Chapter I}Q one

Discuss and sketch the curve y = Ifx=0,

has x The denormnator in this

2y

. . -\

case vanishes if y = 0, so that the x-axi¥js a horizontal
asymptote. Furthermore, y is negativeor every value of
x between —2 and +2. It s positiie:fdi- x greater than 2.

Ty S

Fig. 10

These facts along with a few computed values give us a
eurve a3 shown in Fig. 10.
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Ilustration 6.
x + 3

xX—4

Discuss and sketch the curve ¥y = - Note that

the only difference between this and the equation of Illus-
tration 5 is the y? instead of y. This change alters the
curve considerably. The x-intercept as before is 3. But
v when x = (0, then y? = &
negative number so/that
there is no real .y-inter-
cept. Besides, &ny)value
of x betweén) —2 and
+2 givgs"j@ a negative
value /50> that this be-
comeésan exeluded region.
fvety value of x contrib-

\‘;.n.

fes 2 values of y, and
S\ the curve is symmetric
) with respect to the x-axis.
R\ If x is less than —3, then
o y? is again negative, so
R\ that no part of the curve
is to the left of the x-in-

Re tercept, and we have
‘ng 1 ' ancther excluded region.
' The asymptotes are the

same(; 35'1n the previous eage. The curve is shown in Fig. 11.
Il\geiﬂel'&l the vertical asymptotes to a curve are found

/

N

o4fomn the values of x which will make a variable factor in tie

. ‘\ denominator vanish. Thus ¥y = “_X_' has no Vertica]_ aE-

x4

ymptotes, since x* + 4 is never zero for any real value of x. -

Horizontal asymptotes are found by solving the given equa-
tion for x in terms of y, and proceeding to find values of ¥
which make the denominator vanish.

Ifustration 7.

Discuss and sketch the curve 4x? -+ 9y? = 36. This curve
is symmetrlc with respect to both axes and the origin. If

= 0,y = X2, giving the y-intercepts. Hy = 0.5 = =3,
giving the x-intercepts.
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Solving for y we have y = +2V0 — x%, and thus no value
of x greater than 3 will give a real value for y. Solving for
x we have x = +§v4 — y?, and thus no value of y greater
than 2 will give a real
value for x. Therefore

the curve must lie en- o

tirely within a rectangle ‘-\\
bounded by the lines x \
=3,X=—3;}"—'2,y T3 -1 -1 1 9 .’l’\v\x
= —2, This curveisan \_1 Q-
ellipse, as shown by the A
graph in Fig. 12, In ot
general, every curve of 4

the type Ax®+ By? = C
where A, B, and C are positive qual}gtlies, is an ellipse.

LY

Fig (12

Hiustration 8. ’\ e
Discuss and sketch the curve 4x§ 20y? = 36, This curve
is symmetric with respect to bot:h axes and the origin. The
x-intercepts are 3. If $= 0, y? is negative so that there
are no real y-intercepiss Solvmg the equation for y we
have y = +3Vx? A8 There are no real values of y
R 4 o) for values of x between
SN 3 and +3, and this
is therefore an exclud-
ed region.
If x is greater than 3,
1 then y increases with
I X increasing values of x.
The curve is a hyper-
bola and is shown in
Fig. 13.
In general, Ax* — By*
: = C, where A, B, and
Fig. 13 C are positive, is a
hyperbola.
Graphical representation of other functions are to be found
on the following pages: 61, 62, 63, 64, 70, 71, 74, 79, 80, 81, 85,

117, 118, 135, 170, 172, 173.




Craprer VII]

LINEAR EQUATIONS

. ’\

. B6. Linear Equations in One Unknown. R :

The simplest possible type of equation involves one ,g'ﬁkx\xown

and is of the first degree. An example would be 22+ 6 = 0.

The solution of this equation is obtained by adding, 6 to both

sides of the equation, yielding 2x = 6; then dividing both sides
by 2, yielding x = 3. QO

In general, sueh an equation would be ({f the formax +b = 0,

and its solution is x = —b/a. K70
If the equation is not in this general form, it can always be
reduced to it. : O
Tlustration. . ” \ .
Solve N 8x — 2 = B(x + 4).

This may be written® 8x — 2 = 5x + 20
\ 3x — Bx = 2042

O —2x = 22
N
N \ x = —1L.
An eqdation of the first degree in one unknown always has
ong and only one solution. '

:"\\.
b7. ‘Q\Linear Equatien in Two Unknowns.

'\.f “Buch an equation involving two unknewns, ssy x and ¥y,
~\would be of the type 2x — 8y = 7. There are an indefinitely
'large number of pairs of values which satisfy this equation. One
such pair would be x = 2, y = —1, Any other solution may be

found by first expressing y as a funetion of x as in Chapter VII.
2x — 7

3 If now a value is assigned to X, the cor
responding value of y may be computed.

_ Any number of such pairs (or solutions) may be found, but
sinee 1t can be proved, usually in analytic geometry, that every
60

This gives y =




LINEAR EQUATIONS -8l

equation of the first degree in two unknowns has a graph which
i a straight line, only two such solutions are necessary to obtain
the graph. It is useful
to compute three such
pairs, generally to 2
assist in avoiding
errors. For, if all three
values lie on the same
line one can be reason-
ably sure that no error
of computation has
been made.

Below is a chart
of values and the

A

graph of the equation Fig'\l?
2x — 3y = 7. (See Fig. 14.) \\
x | -1 [ 2 J"5’ |
y ] -3 | —.~.Ij"~|“ 1 i

The general form of the gq{léftion can be written as ax 1+ by
= ¢, where a, b, and ¢ are“numerical values (constants) called
the coefficients. RS
58. System of Two'Linear Equations (2 Unknowns).

Since everyslwear equation in two unknowns has a graph
which is a s;-m"lght line, one might expect that if two such equa-
tions are grap hed, they might have points in common.

In\,@gt,' one of three situations must be true:
“u'}. The graphs have only orne point in common (intersecting
O lines). :
\ ) b) The graphs have no points in common (the lines are
parallel).
¢} The graphs have all points in common (the lines goincide).

I case (a) holds, the equations are said to have 2 simultane-
ous solution. That is, there is a pair of values (x, y) which satis-
fies both equations. Ordinarily, this common value could be only
approximated by graphical methods, since graphs can be drawn
only with a limited degree of accuracy. Therefore, we shall use
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the graphical solution as an interpretation of the meaning of the
algebraic solution. We proceed now to discuss algebraic means
for obtaining the simultaneous solution. :
The three classifications as given above are also referred to

by saying that:

In case (a) the equations are consistent,

In case (b) the equations are inconsistent, ~

- In case (c) the equations are equivalent or dependet.

69. Solution by Addition or Subtraction. . \ \))
Consider the two equations: K \
3x —dy =7 O (1)
X —|— ﬁy = 6. ’W:\\ (2)

Bepeating the first équatibn, andh'writing an equivalent
expression for the second, obtainehby multiplying each term
by 3 in order to make the coqﬁ‘]}}ié'nts of x in the two equa-

tions equal, one hag: O

| dxkdy =7 (3)
and 8% + 18y = 18 )

Subtracting gquﬁtiun {4) from equation (3), we have:

AN =22y = 11 or
(\J —11
\\ Y= ?2-5 = %.
‘f'.: J Substituting ¥
\ ‘ = % in equation (1)
gives
3x —2=7or
3x =0, x = 3.

This solution is

/ usually written (3,
9/4 %), and represents

: : ' the point which the
' two lines have in

Fig. 15 common, The graph-

. . . ' ical interpretation of
this solution is shown in Fig, 15, where the lines are Iabeled
(1) and (2) to correspond to the equations as given,
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60. Solutien by Substitution.

Suppose now that we solve the equations given in the pre-
ceding section as follows:
From the sceond equation we have:

6 —x

6

by =0 —xory=

Substituting this value of y in the firsé equation gives

)
3 6 — X =7 ’ {;}\
O
Multiply each term by 6 to rid the equation of frdghions, and
we have: 18x — 24 4+ 4x = \’"\\

Colleet terms, and one has: 22x =68orx = ‘3
The value x = 3 may now be qubstltuted‘q\r cither equation,
giving y = 1, as was found before. x\“

~~ U
)

61, Inconsistent and Dependent Cgséﬁs.m

Nlustration 1. &Y

R

The equations 2x 3y 6 and 2x + 3y = 12 represent
parallel lincs, as sho@n by Fig. 16, If we try to solve for

Fig. 16

x from this given pair we arrive at 0 = —86, an inconsist.
eney.
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Tlustration 2.
The equations 2x + 3y = 6 and x + y = 2 represent the

same line, In faet, if-

1Y the second equation is
result 1z the first
_ equation. Trying to
1 solve for x or y, Jea

to 0 = 0. {1{1}( pair

the other also. See
Fig. 17’ Kignl?.

62. Systems of Three Linear Equationg ‘@"Unknowns).

A system of three linear equaj:ii;h% in three unknowns may

- be solved by first eliminating one'\of the unknowns and thereby
reducing the problem to that of8elving a system of two equations
in two unknowns. The methdd will be illustrated by an example.

Solve the systeni::' x+ y+z=2 (1)
“\ 2x — 2y —z2 =2, {2)
\\” X+ 2y — 3= -3, @)
Add equations (1) and (2) to eliminate z:
O Ik —y =4 (4)
Ad@:}tiuations (1) and (3) to eliminate z:
§ 2x + 38y = -1 (5
AN »* Now solve equations (4) and (5) for x and y by eliminating, _
\”‘; 2y y. ' _
To do this: Multiply (4) by 3, 9x — 8y = 12. (6)
Repeat equation (5) 2x+ 3y = —1 (7}
Adding (6} and (7) l1x =11
or x =1,

Substitute x = 1 in either equation (4) or (5) obtaining, y = 1.
Using these values of x and y in any of the three given
equations, obtain z = 2,

i multiplied by 3, the -

X >
U 45 e of values of-x end v
. which satisfies one of
' the equations satisfies -

R
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The solution is usually written (1, —1, 2) in which the
values of the unknowns appear in the same order as they
appeared in the given system of equations. The method is
general and will apply to a system of n equations in n un-
knowns.

63. Otiber Methods of Solution.

For those who wish to solve systems of linear equations by{\
means of determinants, Chapter XX may be taken up at this t.msﬁ

'“:\ o
% \/’
/‘\‘3
AN
‘€%
N
D
<’
OV
QY
‘:s:;‘
N
s\’g Y
N\
N
A\
N\ \
{A )\v/
N
Y
Vs./
.{\
O



S

'\
N/
%

2

CuarrER IX

THE QUADRATIC EQUATION IN ONE UNXNOWN

N\
64. Introduction.

So far, we have been considering the solution of 1i1ie?a’.r\equa.-
tions. We now begin & study of equations of higher degree than
the first, by studying the quadratic equation in Qx.fe"iinknown.

Definition: A second degree (quadratig)‘\ec'mation in one
unknown x, which ean be expressed in the form ax? + bx +¢ = 0, -
will be referred to in this chapter simply a8h quadratic equation.

The ccefficients, a, b, and ¢, repregend constants, and we shall
confine our attention to the case whete these constants represent
real numbers, Specific examples of quadratic equations would be:

9%~ 5x +7 =0 Héea=2"b=—5c=7
2-90=0 «Herea=1,b=0,¢c = —9.
4+ 2Xx=0 . “Herea=3,b=2¢=0

We should remark’g”{;:this point that we do not have a cage where
& = (), since thei\‘bhé equation would have no term of the second
degree and wostld then be linear in type. Furthermore, the equa~
tion cannot $ave terms of higher degree than the second.

We «deépt the form ax® + bx 4+ ¢ = 0 as representing the
type form of the quadratic equation because any equation of the
second degree in one unknown ean be reduced to this form.

3 "Consider the equation

@x — 8+ (x— DE4+2) —4x 4+ 5 = 2.

- If we simplify this equation by performing the indicated oper-
ations and collecting terms, we have:

4 — 12x+ 94 x*+x—-2 - 4x+5—2=0 or
5x* — 18x + 10 = 0 or dividing out the factor 5,
X! — 3x + 2 = 0, which is now in type form with
a=1b=-3¢=2
66

N
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66, Incomplete Quadratics and Their Solutions.

Definition: If all of the terms of the type form are not pres-
ent, the quadratie is said to be incomplete.

Fxample 1: Consider the incomplete quadratic equation
x* — 2x = (. This equation can be solved by means of
factoring as follows. Write the equation as x(x — 2) = 0.
Then one of the factors of this product must be zero. If wer
set the first equal to zero, we have x = 0 as one solution!
If we set the second equal to zero, we have x — 2(=/8,
or x = 2 as the other solution. QO
Example 2: Consider now the equation x*™=% 9 = 0.
This can be solved simply by extracting thegquare root of
‘both sides of the equation after writing(it in the form
=09 \
Thig gives x = 3, meaning that w'g\\h'ave two solutions.
x =3 and x = —3. This could¢have been obtained by
factoring the given expression fote (x — 3)(x+ 3) = 0.
Example 3: Consider the edimtion x2 + 9 = 0. If we re-
call the guadratic forms with their factors as considered in
Sec. 13, we see that thia simple quadratic equation cannot
be solved by means{of facts there presented. Indeed this
gimple equation, l’géa}is us to quite a novel situation. One
can, however, roceed as follows.
Write the eqiation as x> = —9. Then extract the square
root of poth sides of this equation obtaining x = £V —9.
But Bow can we extract the square root of a negative
nuwfber? The result can be neither +3 or —3, for the
#gtre must be —9; and neither of these numbers when
_~\Squarced gives —9, but each gives --9. This leads us to
™\ discuss the situation in the next paragraph.

66. Square Roots of Negative Numbers.

We shall see presently that the square root of a negative
number is a special type of number. Like the numbers with
which we are already familiar, these new numbers behave prop-
erly under the fundamental operations and also lead us to very
interest—ing prbperties and results. Before discussing them further
We must consider a few definitions.
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Definition 1: A number which is the square root of & nega-
tive number or which involves square roots of negative
rumbers is called an imaginary number.

Definition 2: We designate V' —1 by i (1.e.,1 =V :"1-) and
call this number the imaginary unit. Its role is similar
_to the number 1 in the ordinary number system.

Definition 3: A number of the form a + bi where a.40d b

are real numbers is called a complex number. O\
Definition 4: The two complex numbers & + b1 and a — bi
are called conjugate complex numbers, oaﬂd each is the

conjugate of the ather.

We have seen in Sec. 38 that a number Such as V12 can be
simplified to the form V/(4}(3} = 2v3. - In a similar way we can
write an imaginary number, such as V24, as VA(—1) = 2v —1
= 2. In faect, any number v/ -—a, an be written V' a({—1) =
Vav=1=+vai (

Now ginee i is the squaje root of —1, we have also that
= -1 that iz, it is 3 num‘ber such that its square is the negative
umt. - : N\,

In order to show“bow one performs the fundamental oper-
ations with 1mag1na}y numbers, we list the following examples:

VT4V 3 = 24 )i = 5L
VB4 Vot~V 0 = VB + 25~ 3 = (VB 42— 3i
= (VB - Di.

o

-(v\ )%\?—"2') = (V2 = 3v2i2 = 3V3(~1) = ~3V2.

Y forming products of imaginary numbers we must always
W’nte them in the form ki and mi and form the product kmi?
= km{—1) = —km.

As exampleg of complex numbers we have:
2+ 5, —8 + V2, 1 — Vi, ete,
The eonjugate of 2 + 5iis 2 — 5i.
The sum of (2 + 5i) + {2 — 50) is 4 since Bi — 51 = 0.
The sum of {2 4- 51) + (7 —6i)is9 — 1.

The produet (2 + 51)(2 — 5i) is evaluated by the rule
given in Sec. 15 and is the product of the sum and difference
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of two guantities and therefore equal to the square of the
first minus the square of the seeond.
Therefare (2 + 51)(2 — 51) = 28 — (5i)? = 4 — 251 = 4
+ 25 = 20,
We now prove two theorems which are especially useful in
connection with the theory of quadratic equations.
Theorem 1. The sum of a conjugate pair of complex num-
bers is a real number. O
Proof: Take a 4 bi and a — bi as the conjugate pa.ll‘
Then the sum a + bi 4+ a — bi = 2a, which is a real m.lmber
gince g and b are real numbers.
Theorem II, The product of a conjugate pa.1r~ of‘ complex
numbers is & real positive number. L&
Proof: Take a -4 bi and a — bi asdlie onjugate pair.
Then (a 4 bij(a — bi) = a? — b¥4? = gﬁ\—!; b2 Sineeaand b
are real numbers, and since whether Agitive or negative their
squares will be positive, the sumeftwo positive numbers is
again a positive number. O
A more complete discussions of complex numbers cecurs in
Chapter XVII, but what we hava given here ig sufficient for
our needs at thxs time.

w

87. Various Methquifor Solving Quadratic Equations.

We now consxdém order, the four most common methods of
solving a quadmtlc equation. These are as follows: 8} Graphical
Solution, b) F&etormg, ¢) Completing the Square, and d) Solution
by Formyla{

a} Q‘Gl‘é.phmal Solution,

This method depends upon the ideas which we first met in
the\ chapter on Graphs and Functions (Chapter VII). Itis an
_dpproximate method in most instances, but should give us & good
understanding of what we mean by solving a quadratic equation.

Consider the equation x* — 5% + 6 = 0. If we assign values
to X we obtain various values for the entire expression. In other
words, we may employ the function notation and write:

fx) = x2 — Bx + 6.

The following chart shows the values of x used and the cor-
responding values for the function.
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=3 (=2 |-1]0] 1225 {3 [4]5] 6|7
fx) |30 20]12]6,2i0]-25]0 |26 12]2

If we plot these values on a coordinate system, measuring x
along the x-axis and f(x) along the y-axis, we obtain a curve as
appears in Fig. 18.

The graph shows only some of \he
pairs of values in the chart. , The stu-
dent can easily verify thatf (if values of
x such as 9, 10, 11, ctg\, or x = —4,
—5, —6, ete., the value of ‘the function
10 increases rapldly ,»‘In other words, the

graph continugs\Ntpward as is indi-

cated by the arfows but at the same

time ne portion of it is a straight

L line. Such a curve as shown here is
i called 3 parabola. The eurve crosses
thé x-axis at the points where x = 2

. a:na x = 3. For these values of x,

b ————2(x) equals zero. In other words, x

¥

L = 2 and x = 3 satisfy the equation

¢\J x? — 5x 4+ 6 = 0, and these two values

\ B\ are called the roots or solutions of the
Fié:'lfi equation x2 — 5x 4 6 = 0.

¢ Definition: Any value, or values,

of X wh'éh sat;sfy an equation are called the roots (or solutmns,
zve{os) of the equation.

8 a second example, consider the equation —x? 4 2x 4 6

.\» 0 Again, let f(x) = —x2 4 2x 4 6, and obtain the following

:~chart by assigning values to x and computing the corresponding
values of f(x).

x ‘ﬂ,4‘—3‘—2‘—110'1‘2|3[ 4] 5} 6
f(x)]—181—9‘~2' 3|6\7\6|3\-2|—9|-1S

The graph in this case, Fig. 19, is inverted from the first ex-
ample. The roots are not integral and appear to be approximately,
x = —15 and x = 3.7. The exact Wihlt,s cannot be obtained
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from the graph. We shall see later just how to determine ex-
actly the roots for this particular equation.
Note. These two equations characterize several facts concerning quad-
ratic equations in one unknown.
I. If the coefficient of the x®
term is positive, the graph
opens upward.

2. If the coeflicient of the x®
term, is negative, the graph
opens downward.

3. The graph of every equation
f(x) = ax? + bx <+ ¢ is like
the above curves, its size and
position with reference to
the coordinate axes being (V-5
determined by the particular X\J
values of &, b, and e. -

b) Bolution by Faetoring. o ) —10

Under many ecircumstalices a
quadratic equation can bé solved by
referring to the second\‘dégree forms
of See. 15. N |

We illustrate-the method by two examples.

Examplg\]¥ Givenx?! — x — 12 = 0.
This faptors easily into (x — 4)(x + 3) = 0, and we em-
plognthe fact that if the product of two or more quantities

8 élual to zero, one or more of the factors must be zero.

"Consequently, x — 4 = 0 or x + 3 = 0, which gives two

Fig. 19

\m‘; * values for x, namely x = 4 and x = —3. Substitution of
these values for x checks the fact that they are the two
solutions. -

Example 2: Given2x® + 5x — 3 = 0.
This may be written (2x — 1)(x + 3) = 0. Consequently
2X ~1=00rx+ 8 =0. These factors in turn yield the
solutions x = Zandx = —3.

¢} Bolution by Completing a Square.

This method depends upon the fact that if one squares the
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quantity (x + k) one obtains (x + k)? = xt + 2kx + k%, and one
cees that the third term of the right hand expression is the
squaze of half the eoefficient of x in the second term. We employ
this fact as follows:
Consider the equation x2 — 5x + 6 = 0.
By transposing the 6 to the right hand side, we have:
2 — 5x = —6. N

The coefficient of x is 5, half of this value is —5. A

7

O\
By squaring —§ and adding this value to cach side of the
equation, we obtain hy

X — Bx L3 = —6 28 = —28 428 Loy
x? — bx + & = L. R4
The left hand member is now a perfedt square and may be
rewritten as: RN
(- = B (O

FExtracting the sguare root of b
X— 3§ = 43*

Henee x = § 4} yields twd values for x,
x=5+1 e, x.’#j?;‘or 2.

’sh\ sides, we have:

Comparison with the first example under (a} of this seetion
shows us thai these ®olutions agree with those obtained before.
A3 a secon a@aﬁlple consider —x* +4- 2x - 6 = 0,
This can ke written —x2 + 2x = —6orx® — 2x = 6.
Taking/balf the coefficient of x, squaring it and adding it to
both sideg, )
.»\"}2—2};—}—1 =6+1="Tor
A x— 1= (V) 8o that
D x—1=xV7andx=14+V7

These two values of x are the exact values to which reference
was made at the end of the discussion of the second graphical
solution under case (a) of this section.

d) Bolution by Formula,
By applying the method of section (¢) to the genefa.l

* Note: In extracting the square roof, the double sign might be placed
on hoth sides, but to do so does not contribute any more solutions sines

= — isthesame as + = +. And — = + iz the same as 3 = —.
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equation ax® 4 bx -+ ¢ = 0 one may develop a formuls for solv-
ing & quadratic equation. Since by assumption a, the coefficient
of %, was different from zero, we may divide both sides of the
equation by a and obtain

x2+£x+c/a.=0.
Transposing e/a to the right hand side,

x~+bx— —¢/a. O\
Completmg the aquare by adding b2/4a.2 to both sides:
x? +— x + b¥/4a? = b?/4a? — e/a = b;;tags 0;:
a 43‘./\"

b? — 4ae
(x+b/2a) = B

\/
Extracting the square root of both mdess‘{x >

)\

X+ b/2a = ibz;t—@ Henee we have the quad-
ratic formula
_ —b ES e b’
- N

By using first the + a 7él then the — sign before the radical
we obtain the two roots of the quadratic equation.
Example: Solve %P — 5x — 2 = 0.

Here a =3 b = —5, and ¢ = —2 Using the
formula, ang notmg that —b = —(—5) = +5and —4ac ==
—4(3)(~ 2)\-— 24, we have:

.§~;’h 5+V25+24_5xV49 57
N\ N 6 T 6 6
“\:“\;" = 2 or —}.

68, “Theory Associated with a Quadratic Equation.
If a quadratic equation is represented by the form

ax? + bx -+ ¢ = 0, then, .
—b = Vb? — dac

L The roots are given by the formula x = %
2. The equation always has two roots, namely,
- - - Vb? — 4dac
¥ = b+ VP — dac apd x = b —

2a 2a

N
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3. The quantity b? — 4ac is defined as the discriminant of
the quadratie equation because it distinguishes the kinds of
roots which the quadratic equation has.
4, If the discriminant, b* — 4ac, equals zero, the equation
has two equal roots, ‘These values are cach equal 0 —b/2a,
as is seen from (2) above.

QGraphically this means that the parabola is tangentiio
the x-axis at a point where x = —b/2a. (See Fig. 20.)
5. If the diseriminant is a positive number, then *the\equa-
tion has two real and distinct roots whose values are given
by (2) above. <~~.;.

Case 1. If b? — 4ac is a perfect squage, the roots are
real, rational, and unequal.

Case 2. If b? — 4ac is not a p\erfect square, the roots .
are real, irrational, and unequal. /)~ _

In either ecase, the parabola\crosses the x-axis at two
distinct real poings. (See Fxgs 13, 19, 21.)
6. If the discriminant isyegative, the raots given by (2)
are conjugate complex uhiibers. This follows from the faet
that we must take the \square root of & negative number, and
from Definition 4, Séc. 66 of this chapter. The graphical
situation is that{the parabola does not cut the x-axis. (See
Fig. 22) ¢4\

Geaphical Interpretation for b — 4ac

Y "'\’.5 i ¥ ¥

L >

O ,

Avll
=]

¥
2 b
1 ‘ ]
T2 3 4 K —n—!\j:x -1 ~7 1 T %
k|
Fig. 20 Fig. 21 Fig. 22
y =%} = dx+ 4 y =x—x~2 y =+ x

where b? — 4ac = 0 where b — dac = 9 where b — Jac = — 3
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7. ‘The sum of the roots of a quadratic equation is equal
to —b/a.

: - b2 — 4ac
Proof: From (2) the roots are x = b+ \Q: 4ac
_ b=V —dac

a 2a

The sum of these roots is:
~b+Vb2—4ac+—b—\/W-4ac —2h b

= e—— = -J\T:N

2a 23 28 \8

8. The product of the roots of a quadratic equatiop.ig Equal

to ¢/a. : o O\
Proo: (—b + Vi = 4ac)(—b ~ \/b2~'31<4ac)
2a, 23
b? — (b? — 4ac) N
= T! “\s.

since the product in the nume;fa,tbrs is that of a sum and
difference and by See. 1§~jié:equa,l to the square of the
first part minus the squase'of the second. Furthermore,

b2 — (b7 — 4a¢) h® = b?+dac _ dac _ C

482 L 4a2 T 43 a

)
9. It follows froix(\@) and (5) that if one of the roots of a
quadratic equatton is real, the other is real. It follows from
(6) that if orig’of the roots is complex, then the other is also
complex andis the conjugate of the first.
10. Itdfalows from (7) and (8) above, and from the theorems
I and\H, Sec. 66, that a quadratic equation with conjugate
complex roots will have real coefficients. Conversely, quad-
~[(ritie equations with real coefficients may have conjugate
’ complex roots. '

89. Applications of the Theory of 2 Quadratic Equation.

Example 1: Write the quadratic equation whose roots are
e 2 and x= 3. . . .
Solution: If one thinks of the quadratic equation In the

form x2 + gx — ¢/a = 0, then the sum of the roots must
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equal —b/a; 46, 24+ 3 =5 = —b/a so that b/a = —§.
The product of the roots = ¢/a = 2.3 = 6. Hence the
equationisx® — 5x + 6 =.0.
Another method for finding this equation would be to
change the equations giving the roots to factors, asfollows. .
Since x = 2, then x — 2 = §; and gince x = 3, thenx — 3
={. The product of the factors (x — 2}(x — 3) = X’
—5x 46 =0. \
‘O
Example 2;: Without solving, determine the natu‘re of the
roots of the equation 2x% — 5x 47 = 0. ¢ ».’;
Sotution: The diseriminant, b? — 4ae, m“{:hls case equals
(—5)2—4-2-7 = 25 — 56 = g negabive number. Hence
the roots are complex. This also telld\isg'that the graph of
the equation would not cross the x-axis.

In problems involving the nature.gf the roots of a quadratic
equation, one always computes the ¥alue of the diseriminant, and
draws conclusions based upon patts'3, 4, 5, and 6 of Sec. 68.

Example 3: Find thewalueof kin 2x? + 5x + k + 1 = 0,
if the difference pf\the roots is 2.

Solution: Gsﬁl the roots ry a.ud r2. Aceording to (7), Sec.
68, r 4+ rg\% 4 Buft i —r;=% as given. Adding
these tWQ’!!e].&tanShlpS gives 2r; = lorr; = 4. Using this
valug 6f 1) = % we find that 4 = —3. Thus we know the
rop&é.ﬂf the equation. From (8), Sec. 68, the product of

Ny k41 k+1
\&he roots equals 2 >

'f'.'; = (3)(—3) = —3. This last relationship gives k +1 =
A~ —3ork= —4.

\V Many problems of this character are to be found, where a
particular relationship involving the roots is deseribed.  The given
relationship should be combined with either (7) or (8) of Sec. 68,
thus providing sufficient data to enable one to solve the problem.

for the given etlua.tion. But

Example 4: Determine k so that the equation 3x? 4 kx
~ 2 = (x -+ 1)* will have one root equal to — 3.
Solution: Since —3 is a root, then ~3 must satisfy the
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given equation. That is, 3(—3)? — 3k — 2 = (—3 + 1)
or27 — 8k —2=4. Thisgivesk = 7.

Using this value of k, the given equation can be reduced
to 2x% + 5% — 3 = 0, whose roots were shown in Example
310 be L and —3. Thus the conditions of Example 4 are
satisfied.

70. Other Apphcatmns

Certain problems require for then' solution (ar lead to) qua;l~\

<L W3

1atic equations.
These cases in general may be enumerated as follows
- \ N

These are discussed in Chapter XI1L A\
\/

a) Fquations involving radicals,
k) Egquations involving fractional indices "\\
¢) PEquations not themselves quadratie, B‘ut which are
quadratic in form, o\

and the reader should consult Chapter XII\for their discussion.

N ‘

N/

N\
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CHAPTER X

SYSTEMS OF QUADRATIC EGQUATIONS
71. Infroduction. \

The general type form of a quadratlc eguation m ’tm‘o un-
knowns is usually written as: ax® + bxy -+ ey? 4 dx —[— ey 4+ £=0
The quantities a, b,. . . . .. f are constants, and ©One must make
the restriction that not all three of the constants/a, b, ¢ are zero;
otherwise the equation would be linear. ""\

Two such equations may be solved s:multa,neously, as was
the case for linear equations. Howewén “a general method for
solving such systems is not givenijn'a first course in algebra.
Instead, special methods for speial”cases are considered. We
begin with the following intermediate case.

72. One Equation Linear, Ii;h’é Other Quadratic.
Ilustration 1.

Solve s1multan\)usly Chxy-y+2=-7 (D
2% + 3y = 4. (2)

The folloiaving method is general. Solve the linear equa-
tigs oF one of the variables, say y, obtaining

:"\‘."’ — 4 — 2x.
'\,\\“ ¥y = 3 (3)

Substitute the value of y from (3} in (1), obtaining,

x=+x( _:;2)()——(4_32)()2+2x+7=0.

This becomes upon simplification,

X —46x — 47 =0or (x+ L)(x — 47) = 0.
These factors give solutions x = —1 or 47, and substitut-
ing them in (3) gives corresponding values of y = 2 or
—30. These pairs of solutions are usually written, (—1, 2)
and (47, —30).

78
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Tlustration 2.

Solve simultaneously y = x* (1)
y=x+2 2)

Eliminating the value of ¥ Ly
between these two equations
gives

¥—-x—2=0 - @&
Factoring, (x — 2}{x + 1) = Ao
0, The sclutions are x = 2 2
or —1, and the corresponding ]
values of v are, y = 4 or 1. AW}
The graphs of the two equa- Y
tions are shown in Fig. 23. -1
The simultaneous solutions 2\
represent the points of inter- /47\\—1 & Tx
sections of the two graphs. &)
By examining the diseriminant ,
of equation (3) we see that b&®
—4ae =1+ 8 = gwhich
tells us that the intgrSeehons will be distinet.

Fig. 23

Lilustration 3. ~<
Solve smultane{i%sly y = x (L
iY y = X — _ . (2)
! " Eliminating y from the two equa-
tions gives _
x—x+31=0 6]

Factoring (x — $)(x — 3) = 0. The
two equal solutions are x = % and
1 giving y = % and §. ¥ig. 24
shows that the parabola is tangent
to the line at the point (3, 2).
This is to be expected sinee from
«  equation (3),b? —dac=1— 1 =0

/ Titustration 4. -
3 Solve simultaneously y =x¢ (1)

Fig, 24 - y=x—-3.(2)
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Eliminating y gives the equation, x> —x+3 =20, (3)
14+vV—-11 1 -V 11

2 2 ’
—5+vV-11 -5 -V =11

2 ’ 2

whose roots are X =

and corresponding, y =
N
Thus, the sclutions are gcomplex

numbers, and the graphs Jdo mnot
interseet as shown in Kig. 25. This

¥

3 could have heen an‘tlclpated gince
\ for equation @l, b? — 4&8 = 1
- 12 = L :

1 .
a\/
; r— /4'x 73. Both Equations of Type
- - -
N axt ey +£ =0,

N " Such a system may be solved
«\ by methods already used for linear

- A" systems. We illustrate by solving
/ ~ two problems.
Fig, 2\5”} Tlustration 1. _
Solve sigwltaneously gt 4 16y? = 145 {1)
Q" 3 — dyr= 1l @)

fﬂ‘smg addition-subtraction method:
\ Multlply equation (2) by 4 and add to equation (1}, obtain-
ing

21}(2 =18% or x*=9.

Solving for x gives, x = £3.

Now multiply equation (2) by 3 and subtract from equa~
tior (1) obtaining

28y* = 112 or vyt =4,

Solving for y gives, y = 42. The solutions consist of all
possible pairs of these values, namely, (3, 2), (3, —2),
(=3, 2), (=3, —2). See Fig. 26.
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Y

Tlustration 2. }\\
Belve simultaneounsly 3x2 — 4y% (=11 (1)
X %= 18. 2)

Using substitution method;;:{:l
Solving equation (2) for ~yﬂ we have, y? = 13 — % (3)
Substltutlng this va,lu{a of y* in equation (1) gives
x2 -5 4x? = 11 or x® = _
x\“ - -
Bolving for X, gl 8, %X = = 3. If either value of x is sub-
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stituted in equation (3), we obtain y* =4 or y = 2.
The solutions are therefore, (3, 2), (3, —2), (=3, 2, (-3,
—2). SeeFig. 27.

74." All Terms Containing Unlmowné Are of Second Degree.

This means that no first degree terms oceur in either equa-

tion. We show two methods of solqtion. A
Tliustration 1. ) . o
Solve simultaneously 3xy 4 x* = 28 NS Q)
4yt + xy = :\3 (2)

Method 1. Substitute y = mx in both equatlons
From equation (1): :

3mx? - % = 28 or ¥ = 25 N @)
300 <h
From equation (2}: \\“
8
2 - -
4m?x? + mx Sorx?m4g+m (4)

Equating the two expressmns for x? in (3) and (4), and clear-
ing the equation of fractlons; 3

112m’~+'28m = 24m -+ 8 or

A28m? +m — 2 = 0. . (5)
Factoring eq@,tmn (5): (4m — 1)(Tmy + 2) = 0, which yields
:‘Q m=%andm= —4. : (6)
Usmg. e } in equation (3) [we could use equation (4]
'}2 = o = 28 -4/7 = 16, from which x = +4 or —4.
,:% I
»\.. 3% Using t.hese values of m and x in y = mx, we obtain
a\"% y=4%'4=1and
N/ y = :15. (—4) = —
Now using m = —2/7 in equation (3)
/7 = 28 -7 = 196, and
x = 14 or —14.

Using this set of va.lues of m and x in y = mx, we obtain
y= —2/7(14) = —4 and
y=—2/1—-14) = 44, "
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Value of Corresponding
m values of ¥ = mx
used x
m = } 4 1
—4 -1
m = —§ 14 —4
\_ -14 4

The student will find it convenient to construect a chart as shm}n
above to keep the values of m and the solutions correlatedin"the
proper orders. The pairs of x and v cannot be combjnég{ indis-
criminately, but must be paired as found in the stag,es\' wf solution,

Method 2. Eliminating the independent conStants.

Use the same equations, 3xy + x* =_38 (1)

1yt + xy, 28, (2)

Multiply equation (2) by 7: 28y 4%y = 56. (3)
Multiply equation (1) by 2: 6xy $H2x* = 56, (4)
Subtract (4) from (3): 2892 + xy — 2x? = 0. (5)

Factoring equation (5): 2y - 0@y +2x) =0 (6)
If each of the factors of (6) is solved with one of the equa-
tions (1) or (2), one obtais@\the solutions of the original system.
Thus one may solve, bx*t}le method of See. 72, the two pairs of
equations: AN
4y¥H xy =8 dy? +-xy =8
or
{4 vy +2x =0.

R
dy —x =0
The readen@hould verify that these solutions are (4, 1), (—4, —1),
(14, —4n(— 14, 4), as were found by the first method of this
sectiofth ‘Method 2 may be employed to advantage whenever the
qua}:ion corresponding to (5) is readily factorable.

76. Symmetrical Equations.

If the interchanging of x and y leaves an equation unchanged,
the equation is said to be symmetrical with respect to x and y.
Thus, 3x + xy -+ 3y% 4 2x + 2y = 7 is a symmetrical equation.
It is easily seen that in order to have symmetry, x* and y? must
have the same coefficients; also x and y must have the same
coefficients. '
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Tifustration 1. .
Solve simultaneously x2—xy+y'=7 (1)
x+xy+y=1L (2)
For this type,letx =u+v, y=u — v.
Substituting these values in (1) w4 3v? = 7 3

Substituting these valuesin (2) w? + 2u — v* =11. (4
We can eliminate v* by adding 3 times (4) to (3), obtaining

4uw* + 6u = 40, .
which can be simplified to, 2u®+ 8u — 20 = 0. R, (NS (8)
Factoring (5) {2u — 5){u + 4) = 0 so that u = 3 Or u= —4.
Using u = £ in equation (3) we obtain 3v? = 7. & %8 = 3, from

which v? = §, so that v = % or —§. With Hese values of u
and v, we obta,m two pairs of values of x ad) ¥, as.shown in the

Value Corresponding K \\ ’ ;I
of values of x = uN-Y y=u-—v
u v \®
$ 3 Ao 8 2
, -3 & 2 3
-4 VBN -2+ 43 | —4— VE
*\/31‘ 4 — /3 —4 4 /3

ad,]ommg chart. No’w using U = —4 in equation (3) we obtain
= —3 80 'that\v = =V3i. With this last set of values of u
a.nd v we obtaint the remaining values of x and y. 'The substitu-
tion of =M +v, y=u -~ v, may be used in solving many
equatu{n'}whlch are not symmetrical, but in which the signs +
and\ are the only aspects which interfere with symmetry.

.\~76. Hints and Other Special Devices,

In this section the reader will find several typical cases solved.

- The illustrations which are given should not be looked upon as

covering all of the varieties of such problems. They have been
included with the view of helping the reader develop his ideas on
the various tactics which may be employed to solve systems of
equations. Most of the cases illustrated will lead to solutions
involving only linear and quadratic equations. Somewhat similar
devices may be used with equations of higher degree, but such
cases are not studied in a first course in college algebra.
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Dlustration 1. _

¥+ y =13 {1)
Xy = 6. (2)

Multiply equation (2) by 2: 2xy = 12, (3)

Add (3) and (1): =x® + 2xy + y2 = 25,

Take square root of both sides: x + y = 45, (4}

Subtract (3) from (I): x* — 2xy + y2 = 1. N

Take square root; x —y = x1. (5)

Thus ene is led to the problem of solving the equations (4),%ith
{5). 'This means one has four systems of linear equatlons tosdve,
namely:
X+y=5 x+y=35 x—]—y=—5 x+y——5
X—y=1 x—-y=-1 x-y=1 .x,\—y*-—l
The results in each set are respectively:

(3, 2) (2, 3) (=3, =2 (-2, —3).

The graphical interpretation of thas\methcud is as follows,
The two equations, as gwen, 1ntersect in’ four points. These four
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points are also the positions in which the pairs of lines intersect.
Fig. 28 shows the given curves in hold line, and the pairs of linear
equations as dotted lines.

The points of intersection are common to the various systems.

Hlustration 2,

-y =9 4y
x—y=3 N2)

Divide (1) by (2): x4 xy + ¥ = 3, N (3)

The real solutions of equations (2) and (3) are the fre ks the
solutions of (1) and (2), and may be found by the method of
Bec. 72. N

Solving equation (2) for y givesy = x — 8.0
Substituting this value for y in equation (3)\gives:

xf—l—x2q3x+x2—6xx-|-\\9;=3 or
x? — 33§+ 2=0.

The solutions for x are 2 or 1, Svith corresponding values for
¥ being —1 or —2.

The points of mtersectmn are therefore (2, —1) and (1, —2).
Normally one would expect b third degree and a linear equation

. to have three solutions, In the present case one solution is infi-

nite. In this outlxne:we confine our attention to the real solu-

tions, and leaw \the more general discussions for a eourse in
algebraie geothetr

musftzaj:mn 3.
Y Xt + y5 = 35 (1)
\:';\." X—xy+yt=7. : 2)
L\ Divide (1) by (2): x+y=5 (3)

"\Nﬁw solve (3} with (2) and one obtains two solutions, namely,
\\ A2, 3) and (3, 2), - -

The method used in Illustrations 2 and 3 may be used when-
ever the left hand member of one equation.is the sum or difference
of two cubes, and the left hand member of the other equation is
a factor of the expression of the first equation. See Sec. 17,
Formulas I and J, for the factors of these forms.

Hlystration 4.
vVx x +Vy y = § ' (1
x 4y = 65. (2)
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These two equations can be pust in the samesfonn as those -
of Illustration 2. For if one sets Vx = u and Vy = v in the
above equations, they become respectively,

utv=>5 (3)
u* -+ v¥ = 65, (4)
Now divide {4) by (3) w —uv 4+ v? = 13, (5)
Bquare equation (3) u? 4 2uv + v = 25, ' (6),

Subtract (5) from (6) ' 3uv = 12.
Therefore, uv =4orv =4,k \f'il)
This value of v may now be substituted in equation (3), yke?dlng,

u+4/u=5 N
oru? —~ 5u-+4 =0 D
(u—-4HQu -1 =0. \

Therefore, v =4oru=1.

. From equation (7) the corresponding vﬁhlcs of varev=1
orv =4, N\

From the substitution which wast made we sgee that x = 1
andy = v%. Consequently (x = 64y'= 1) and (x = 1,y = 64)
are solutions of the given equatmns The method just used to
solve cquations (3) and (4) isan alternative for solving Illustra-
tion 2 and the reader willfind it valuable practice to solve the
second illustration by t}{m:method

Iflyustration §. O\ -

N O xX—y=Txy (1)
' " x—y=2 (2)
Divide equatm (1) by equation (2):
X4 xy + ¥yt = Ixy. (3)
Mulmply%) by 2 2x? + 2xy + 2y* = Txy. {4)
Collegtterms 2x* — Bxy - 2y* = 0. (8)
me equation (2) x=y+2 (6)
‘Suubstltute value of x from equation (6) in equation (5)
Hy*+ 4y +4) - by(y +2) + 2y = 0. @
Collect terms yi4+2y —8=0
or (y+4y—2) =0
Therefore L y=2o0ry = —4.

When these values of ¥ are substituted in (6) x = 4andx = —2.
.This gives the real solutions of the two equations, as (4, 2) and
(=2, -9,
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Iustration 8,
x+Vxy+y=14 (L)
2+ xy+y =84 ' (2
Divide equation (2} by equation (1) obtaining
~Vxy +y=6 3)
Rewrite equation (1) x4+ Vxy +y = 14
Adding 2x + 2y = 20 O
or x+y =10 ) o (1)
Write equation (1) in the form Vxy = —(x + ¥) +\14 (3
Replace (x 4+ y) in (5) by value from (4) ("f}:
Vixy = —10+14ﬂ4\
Squaring xy = 16 Q) :
' or y = 16/x. \ (6)
Substitute this value of y in (4) <!
X + 16/x 4\)
or — 10x +M6 =0
(x-2):(x——8) = 0.
Therefore X = 2 ot 8.

From equation (6) y =8 or 2
Therefore the solutiogs are (2, 8) and (8, 2).

Remark: Thesolutions may also be obtained by substitut-
ing the valuejof ¥ from equation (4} into equation (2), giving:
x* + x(10 =%y + (10 — x)? = 84 or x? — 10x + 16 = 0, as was
also obta@éa'hbove.

mﬂs’tratlon 7.
\ Xy =zy+7 (1)
AN\ X—¥y=Xxy— 5 e
Add equation (1) and (2) X + ¥+ x— y = 2Zxy + 2 (3)
) Transpose and rearrange X2 —~2xy +y'4+x—y—2=0 &
Rewrite (4) as X-y2+&E—-y—2=0 (8)

Treat (x — y) as a quantity and factor this quadratic equation
into:
[~y +2l- G-y -1 =0
yielding the two linear equations
X—y+2=0 _ (6) .
and x —y—1=0 @
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Now solve each of equations (6) and (7) in turn with equa-
tion (2). '

From (6) and (2): xy=3o0ry = 3/x. : (8}
Use the value of yin (6) x—3/x+2 =10
or E24+2x—-3=0

x+3)x—-—1 =0
Bothat x = —3or 1. From (8),y = —1 or 3.
Therefore two solutions are (-3, —1) and (1, 3).

Now from (7) and (2) xy=6ory = 6/x. (@
Use this value of yin (7) x—6/x—1=0 o\
or —x—6=0 Ao

x-x+2)=0 L
So that x = 3 or —2. From (9) y = 2 or —3. \‘
Therefore two other solutions are (3, 2) and (<2\"3).

To summarize, the four solutions are (—3,\\-71), (1, 3), (3, 2),

(-2, —-3). \
Ifiustration 8, AV
1/x + 1/y S\ L
1/% + 1/y8% 61, ) @)

Two methods of solution willB&'shown.

Methed 1. Square.gqdation (1)
\;(xﬁ’+ 2/xy + 1/y* = 121
Repeat equation (2) M /x2 + 1/y* = 61

Subtract \ 2/xy = 60. (3
. Now Subtlja(ié}é) from (2) 1/x* - 2/xy +1/y*=1

and sincg\both sides of this equation are perfect squares, we have
on ext,t}f,ctmg square roots, _

O 1/x — 1/y = 1. )

}Vrite (4) as two separate equations and solve each with (1).
That is, solve each of the gystems

/7N

1/x — 1/y = 11 { /x+1/y =11

P 1/x —1/y =1 /x—1/y = =1

Adding 2/x = 12 2/x = 10.
Therefore x=1/6 x=1/5

and y=1/5 y = 1/6.
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Method 2. Let 1/x = u, I/y = v in the given equations
and obtain: '
utv=11
u? + v: =61

These may be solved for u and v by the method of Bee. 72.
From the values of u and v thus obtained, find the _corresponding

values of x and y. £\
Mustration 9. A
X(x - y) = ——6 N N (1)
vix+y) = \/ (2
" Two methods will be shown for solvmg these equ,f.mﬁloislq
- Method 3. Divide (1} by (2), \ :
x/y = —3/50orx = —S$pV (3)

Substitute value of x from (3} in (1) 'xt\\';
—3/5y(Ey)a =5

or, dividing by —8, yi/25 =Y
or ;,%:;;”és
s0 that =wtBor ~5

and from (3) - x*;: 3ot +3.

The solutions are therefme (—3, 5) and (3, —5).

Method 2. Rew\}t(‘ equations (1) and (2) as

\\ x*+xy = —6 (N
xy + y* = 10 @
Adding »J x4 2xy + yr =4
g0 that s X4y = £2 (3)
Equa@m {3}, being equivalent to two equations, may be w ritten
O x+y=2 @)
PN and x4y = —2 (5)
” \ “Replace x + y in x{(x + y) = —6 by its value 2 from equation
{4}, then
2x = —§
X = —3

Therefore  y =5,

Replacing (x 4 y) by —2 from equation (5), one obtains
—2% = -6
x=23
and:  y = —5,
S
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Tlustration 10.

X\ 4yt = § (1)
xR 4 vy = 5/8, (2)

Let ¥ = Vx = uand yi2 = \/} = V.
Then eguaticns (1} and (2} hecome u+v=2>5 {3)

l/u+1/v = 5/6. (4)
Reducing the left member of (4) o common denommatlun, weN

have g
H 0\’
u+t+v 5§
w6 \ \E’\ ®
But since u + v = 5 this becomes 5/uv = 5/6 N
so that uv = 5/6. ¢ 2> {6)
Now solve (3) with (6) obtaining O

ud —u) =6 \\\\
u2—5u—i—6=0 '{,

(u —3)u — 2}
Therefore u =3 or y )
From which by either (3) or (6), Y"a 2 or 3.
Therefore Vx=3or2, ahd\/y—20r3

Upon solving for x and y w.?ek have the two pairs of solutions
(9, 4) and (4, 9).

A
o)
O
R
e
AN/
N
N\
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CHarTER X1
THE NATURE OF PROBLEM SOLVING

77. Introductlon. . \\

In the previous chapters we have been giving specml Atten-
tion to definitions, the use of the fundamental operatmns, and
the soluation of linear and quadratic equations. Our work so far
has been mainly the use of certain techmquesh\

Let us now consider some of the logical dspects involved in -
a study of algebra. In order to develop. Q:e ideas which we need
for our present discussion, we must firgt{consider some prel:minary
matters. This we do in the next thiee sections.

®d

78. Wotation and Symbols. (I

As the reader has alx:eady noticed, our work in algebra has
been built around ceridin notations and symbols. We let num-
bers and quantitiesobe}epresented by letters. Relationships con-
necting quantities are represented by equations; operations are
represented by(h, —, +,+/, /", a®, ete.

Let useXamine some speclal cases of the use of literal notation.

Suppqge that n represents an integer. Then every even in-
teger, i€ yepresented by 2n, as 1 takes on integral values.

'ihere are several statements concerning this particular nota-

tmn which we may summarize as follows
S

) If nis any integer, then

1) 2n always represents an even infeger.

2} 2041, and 2n — 1 are always odd integers.

3) oont+1L,n+2 . .. ete., are consecutive infegers.
Another way of writing three consecutive integers would
ben —1,n,n+ 1. Note that these two sequences are
different for the same value of n. For, suppose that
n = 3, then the first sequence has the values 3, 4, 5 but

the second sequence has the values 2, 3, 4.
92
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4) 2n,2n + 2, 2n + 4, or 2n, 2(n + 1), 2(n + 2) sre three
consecutive even integers.
5] 2n+4 1%, 2n+ 3, 2n + 5, etc., are consecutive odd in-
tegers.

There are other examples which we might consider, but the
above illustration is sufficient for our needs in this chapter.
79. From Words to Symbols. O

The transfer from a written statement to an equation Qauses
some students much trouble, Yet such a restatement is gegessary
in many problems in order to produce the equations whwh are to
be solved. Praectice in the writing of equations whlch represent
the statement of the problem is practlcally th.e\o‘nly means of
overcoming such a difficulty.

Let us illustrate this transfer from worc&\t,o symbols by means
cf severs] examples. LV
Dlustration 1. { x
If x oranges cost 28 cents',je'Xpi:ess the cost of one orange.

Since the total cost divided by the number of oranges
represents the cost of @ smgle orange, we have: One orange
eosts 28/x cents.

IMustration 2. &"\

If & boy is (}f\\age x and his brother is three years older,
express thasum of their ages.

If the age’of the first boy is x, the age of his brother is
x £ 35" If 8 represents the sum of their ages,

‘\ S=x4+x+3=2x+43.
\ '.illustration 3.
) Express the fact that Tom is three times as old now as he
was ten years ago.
Let x = his present age;
then x — 10 = his age ten years ago.
By the statement of the problem 3(x — 10) = x.
Note: ¥For the solution we have 3x — 30 = x or 2x =
30, x = 15, and this checks with the statement as given.

N

Tlustration 4,
Find the distance between two air fields if a plane travel-
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ling x miles per hour requires h hours to make the journey.
The use of literal values ag above frequently confuses
students. The same gort of problem, if stated with numerical
values, usually presents no difficulty. Thus, if one is told
that the plane travels at a rate of 120 m.p.h. for 4 hours, the
distance is readily seen to be 4(120} = 480 miles. By anslogy,
the required distance in the problem is h - x miles. ~
80. Reasoning. O

There are two prineipal types of reasoning usuai}j*%p;;lied in
solving problems algebraically. These are knowf ‘as deductive
and inductive reasoning. We shall confine ourgresent discussion
to a simple study of the deductive process, “[nductive reasoning .
is discussed in Chapter XVI. O

We define deductive reasoning by/gaying that in this type
cne starts with some premise* (an@ssumption), and by logical
steps deduces from the given asgliri;;ition & result which is called’
the conclugion. In algebra, theipremise is often obtained from
the statement of the given prpblém. The.argument is based upon
the axioms of equality (séeMSec. 14) and the fundamental oper-
ations, ete.- Perbhaps the whole matter will be clearer after a few
illustrations. ~

Hlustration 1.\\

Find gyvalue of x such that x — 3 = Vv'x + 3.
’Ags\umptitm: The given equation expresses the agsump-
tio,g;}hat a value of x exists for which the equation will be
,‘\btué.

. ‘ Argument: Starting with the given equation, we apply

NV Axiom 6, See. 14, and square both sides of the equation,
\m y ™ thus obtaining, '

X —6x+9=x+3.

Applying Axiom 2, Sec. 14, we subtract x + 3 from both
sides of the equation, obtaining : :

¥ —Tx+6=0

* In many problems which lead to the solution of a simultanecus system

qf equations there will be more than one assumption expressed by the equa-
tions of condition.
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M
\

\ 3

Factoring this quadratic expression according to the prin-
ciples of Sec. 17, we have

x—6x—1 =0

Since the product of the two factors is equal to zero, one of
the factors must have the value zero. If the first factor is
zero then x must equal 6. If the second factor is zero then
x must equal 1. O

Conclusion: We have arrived at the conclusion trh:a»t X
must equal 6 or 1. These values must now be tested\in"the
original equation. Ifx = 6,then 6 — 3 = V6 f.30r 3 = 3.
Ifx =1, then 1 — 3 = V1 {3 or —2 must eqhal/4 or 2.
But —2 does not equal +2. Hence, we coﬁc‘lude that the
only value which satisfies the given equaton is x = 6.

Nlustration 2. 5 x:\\:
A man A in an automobile is«traveling at the rate of 55
miles per hour. A state trobper B starts out one hour
later to overtake him in 4 hours. How fast must B travel
to overtake A? N
Assumption: Letsts miles per hour at which B travels.
Argument: 5(55), = 275 miles, or the distance A has
traveled when B oyertakes him. But by assumption 4x =
the number of @hiles B will travel. At the time of overtaking
these two digtances will be equal; hence

o\ 4x = 275.

. AN i , .
Divide“both sides of this equation by 4 and according to
Axioih 4, Sec. 14,

x = 68%.

..\’.

Conclusion: The rate at which B must travel iz 683
miles per hour.
After considering these two illustrations we may draw some

general conclusions. . The first illustration led us to two numerical
results, one of which satisfied the given equation, the other of
which did not. In the second illustration only one solution was
obtained, and this satisfied the given statement of the problem.

The situation which arose in the first illustration is explained

in the following way. We did not find our solutions directly
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from the given equation. Instead, we performed certain oper-
‘ations which finally resulted in the equation x2 — 7x 4-6 = (.
From this we obtained two solutions, x = 6 and x = 1. Both of
these solutions. satisfy the equation x* — 7x + 6 = 0, but only
one of them, namely x = 6, satisfies the given equation. Conse-
quently we may rightly ask, under what conditions will the solu-
‘tions of the derived equation satisfy the given equation? The
answer to this question will be found in the next few sections;
Oy
81, Equivalent Equations. O
Two equations are equivalent if every solutlQn of either of
them is a solution of the other also. In the preceding section we
‘obtained a derived equation from a given equat’bn by performing
a sequence of algebraic operations. The fo]lo\mng operations lead
to equivalent derived equations. \\
@) Adding or subtracting the sahae guantity fo both sides
of the equation.
b) Multiplying or dividing boﬁh sides of an equatxon by the
same constant num&ncal value, prowded the consfant
is different from zerg)

82. Redundant and ]{efectwe Equations..

If the deriv d\equatmn has more solutions than the given
equation, the derived equation is said to be redundant, Thus
the derived equation in Mustration 1, Bec. 80, is redundant. A
value such(ds % = 1 in that ﬂIustra.tlon is called extraneous.

Thf?\fBﬂOng operations may lead to derived equations which
are redundant.

«\&) Multiplying both sides of an equation by & factor which
NN contains the unknown quantity.
“ b Raising both sides of the given equation to the same
power.
If the derived equation contains fewer solutions than the given
equation, the derived equation is said to be defective.
The following operations may lead to derived equations which
are defective,

¢) Dividing both sides of an equa,txon by a factor which
containg the unknown quantity.

d) Extracting the same root of both sides of an equation.
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Iustration 1,
Solve the equation Vx +4+ 1 =+Vx — 1.
Solution:
Squaring both sides: x 44 +2Vx+d+l1=x~1
Collecting terms: Vit d=—6

Divide by 2: Vx+4= -3 A
Square both sides: X+4=9
Solving for x: x =35, .\:\

Checking: If x = 5 is substituted in the onglna.l equatlon,
wehave: VO4+1=vV5— 1 “or"
34+1=2 " K \WhICh 18
obviously false. \/

Conclusion: The result obtamed{s.extra.neous It sat-
isfies the derived equation but not ‘the original equation.
Since the only solution obtained\dees not satisfy the given
equation we must conclude tbat there are no values of x for
which the given equation igrue.

This does not mean,that there is some defect in our alge-
braic solution. It mean# that we had an assumption, namely
the given equation{ \By deduction, we arrived at the con-
clusion that if there’is a value of x satisfying the given assump-
tion it mightybe'x = 5. But x = § does not satisfy the given
relationship.\"Hence the assumption was false, and we have
been a,]:)\lé £6 detect this fact by our deductive process.

wStration 2,

.;"Sofve the equation x? — 8x + 6 = 25 — 4,

Solution: Rewrite the given equation in the form
_ (x —3)x—2) =2(x —2).
Divide both sides by x — 2 obtaining
x -~ 3 = 2 from which
x = 5.

Comments: The derived equation is defective since it
has only one solution whereas the original equation hag two
solutions, namely x = 5 and x = 2. It is possible to solve
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83.

necessity for checking all solutions to algpbmit}\problems

the given equation without losing any solutions. This is done

as follows. Write the equation as:
x—3Nx—-2)—-2x—-2) = 0.
Then factor into:
x-2x—-3)—-2]=x-2Dx—5) =
These two factors contribute the two solutions x = 5 al@

x = 2, because the original equation was factored instead ol

being divided by x — 2 and losing one of the solutipghsy’
N
N/

Checking Solutions. \

l o ‘
We have discovered in this chapter the reaasons for and the
The

student should form the habit of checkingdevery solution to &
problem, in order that extraneous values’ﬁay be discarded and
that lost solutions may be recovered. N\

Note: When checking solution®\to problems, always substi-

tute the values of the unknown 4 the original equation.

L g
C XY



CuirTER XIT
SOLUTIONS OF TYPICAL PROBLEMS

84. Introduction.

There are many types of preblems which may be solved hy
algebra. It would be almost impossible to show the solutions 6f
every type, and for that reason only a limited number’ 0}' cases
are considered in this chapter. They have been chosen Because:

a) they represent types which often give students. abonmderable

amount of trouble; b) they represent certain apphcatlons of the
theory; and ¢) they should give the studegt some idea of the
methods of setting up equations from the é\tated problems,

86. Equations Involving Fractxonal Ind:ces
DNlustration 1.
Solve X 4 x18 — 6 0
Solution: Letxs y, then the equation becomes

vy —6=0
Factoring, 63(\ Dy + 3) = 0.
Bolving, A\ =2 or y= -3
Therefore, :»c”3 =2 orxif= =3
Cubngg, : x=8 or x=-27,

ubstltutmg these values of x in the given equation, we
{#ind that they both check and are therefore solutions.

S \Iilustratwn2

.  Solve for x, if x3* = 8.
Solution: BExtract the cube root of both sides of the
equation, obtaining x'# = 2. Now square both sides,
andx.= 4. [Read Sec. 33, on Fractional Exponents.]

88. Equations Quadratic in Form.
Equations such as x* + 5x2 + 6 = 0, x82 — 13x** 4 36 = 0,
Or in geperal, ax?® - bx® 4 ¢ = 0, where n is any integer or frac-
99

Q!
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tion, are said to be quadratic in form. The following examples
will show how such equations may be solved by thé methods used
‘in Chapter IX for solving simple quadratic equations,

Titustration 1.
Solve x6—7x3 — 8 = (.

Solution: Let x° = y, and the equation becomes

¥ — 7y — 8 = 0. Qo
- Faetoring, (y — &)y +1) = 0. A
Hence, y=8 or y=—1, A\
Therefore, x*=8 or x8=—1, 4

These last two equations may be wri_tten,,‘éé‘,”‘.
¥ —8=0andx+1=0.8"
and are solved by factoring according %o Formulas I and
J of Sec, 18. \\'
From x* — 8 = 0 we have, up‘&n factoring,
(x — 2)(x? + 2x~+ 4) = ().
and the first factor gyzes % =2
The second factor y}el'ds by the guadratic formula,

= _14v_g
From x® + }¥ 0 we have by factoring,
\(x+1)(x-——‘(+ 1) =0

The, ﬁrs’E factor gives x = —1. The second factor gives
\NY;
::\'": X =-———-—1 * \/—3
in\.,, 2

Q There are therefore six solutions to the given equation,
PN namely, x = —2, x = -1, x = —1 4V _3 3, x=—1
0\ w4 . 1 \/ _ )
\/ -~V -3 x= ——+—2-—“§ and x = !'—lw—“-
Illustration 2,
Solve xt — 4x—12 - 3 = ¢,
Solution: Let x~2 = y. Then we may write,
vi—dy+3 =0

Factoring: y — Diy — 3) = 0.
Therefore, y=1 or yv=3
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Bothat: x# =1 or x12=3

and, 2 =1 or x2=1/3.
Therefore x=1 or X =1/9.

Both of these values satisfy the given equation.

Mustration 3.

'x2+3_\j' X
Solve \/ p. X2+3-—3/2. A

2 - £\ *
Solution: Let /X :‘3 =y. Then O

y — 1/y = 3/2. AN\

Multiplying by 2y: 2y% — 3y — 2 = 0/ °
Factoring: (2y + 1) (y — 2 At}
y=—% or0pE2

2
From the first value of ¥, X—}—“— = —3

4 O
Bquaring: X ;{I_ 3 ’f = 1

Clearing fractions an'@‘tra.nsposing, we have!

& —x+12=0
2\ S
. 1+ v —101
By quadratic formule, x = ===
and both ef these solutions prove to be extraneous.

¢ T
F\f'ﬁmy=2,wehave X -
N\
\” x4 3
Squarmg, —~
NN Clearing fractions and transposing, we have
x*—4x+3 =

Factoring: (x —3)(x ~ 1) =0

Giving as solutions, x =3 or x=1

Both of these values satisfy the given equation.
Nlystration 4.
Bolvex + 1/x2 + x4+ 1/x = 4.

Solution: This equation in its present form is not ex-

= 2,

=4
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actly of the type we are discussing. However, if we add
2 to both sides we may rewrite it as,
(x*4+241/x)+ x+1/x) =6
or (x+1/x2+x+1X)—-6=0
Now let (x + 1/xy = y. Then,

y+y—6=0
F+3)y—2y=0 QO
Therefore, y = =3 or y =2 A
These values of v yield respectively, AN
x+1/x= -3 : X L/‘xe 2
XX+3x+1=0 X!~ 2x(FL =0
3avE | G- pEE D=0
X = o N :
9 | S x = 1.
‘ 2 E
The four solutions are, x = ,1,',‘?}": I, x = —- ;- %
N \ ‘;—3 e '\/g

X=—

Tlustration b. N
Solve 3xt — 4x +3/3¢ < 4 — § = 18,
Solution:m\l‘fs 6 i3 subtracted from each side of this equa-
tion, ({\e‘obtains -
Bx— 4x — 6) + V3x — dx — 6 = 12,
whmﬁ is now in quadratic form.

\\Let V3 —dx - 6 = ¥; then

2

O'O

) 2

N Y+y-12=0
R -3+ =0
N ‘and y=3 or y= —4.

Therefore,

Vi —dx—6 =3 | 0 VAIF_ x5 = —14
3x* —4x -6 =0 . 8x* —4x — 6 =10
3xF—dx — 15 =0 3xt —dx — 22 =0
BGx+5x—-3 =0 4 £VIS0 44 6V5

T e T T 6
x = —5/3 or 2+3v5
x=3 X ==
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The values x = —5/3 and x = 3 satisfy the given equa-
tion but the other two values of x are extraneous,

87. Equations Involving Fractions.

The general attack on such problems is to multiply both sides
of the equation by the L.C.M. of the denominators of the fractions.

Tllustration 1. £\
Solve - 5};—3_3){—1-1 N .
POVES % 1T x4+ 1 <O

N\
Solution: Multiply both sides of the equatiqu by
2x — D(x + 1); Nk

then, (5x — 3)(x + 1) = (8x + 1)(2x & }J
Perform the multiplication, thus obtammg,
ax*—{—2x—‘3“6‘(2—<‘ 1.
Collecting terms, x* — 3x o= 0
x-Dix<2 =
giving x=1INer x= 2.

e

Both of these valueg! ;iz;ﬁisfy the given equation.

Tllustration 2. m<2 )
lve — X =
Solve 2 2&x3—5x+6
Solutwii T\«Iultxply both sides by x? — 5x + 6;
thent ; ¥ —3=2x =~ 4.
ch}kc_tlng terms, x = 41,
X emark: If one should clear fractions by forming the
3% product of means and extremes, one obtains
Q~ < — Bx + 6 = 2t — 8x + 8,
Collecting terms, x*—3x+2=20
x— 1x—2)=0.
Therefore x= 41 or x=2
The value of x = +1 checks as before. The value
x = 2 is extrancous, for it causes the denominator of
each fraction to be zero. The student should read
Secs. 6 and 82 in eonnection with this last remark.
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| Hlustration 3.

2x 4
2x—1+8x—‘4‘%

Solve

Solution: Frequently it saves labor o reduce all frac-
tions to lowest terms before solving the equaticn. Thus
the second fraction in the above equation may be written

I ¥
2x—1 )
: :\'\ :
The equation then becomes . ~\
2x -1 _ “‘ )
2x — 1 + 2x-1 %.“’g\\.
Clearing fractions, 4x 4+ 2 =2x% 1
2%, 53
&= —3/2.

w

88. Equations Involving R@{I’ié:als.

The general procec}ai‘lj'for these problems is to isolate one
| radical at & time to gone fde of the equation. Then upon squar-
" ing both sides of thé.2quation, all terms arising from the isola-tefi
| radical arc freq from the radical. This process is repested until
. all radicals ape eliminated, and the resulting equation is solved by
|! the usual n\le;t{fods. _ _

Extfaneous solutions may arise, and therefore each solution
| obtagixig} must be checked in the original equation. The follow-
o irggiéxamples should make the procedure clear.

| ‘.\':':" Illustration L.

! \"* Solve x + 2Vx + 3 = 21.

| Solution: Transposing, 2Vx + 3 = 21 — x
i Bguaring, 4(x + 8) = 441 — 42x% + %2,
Collecting terms, x2 — 46x -- 420 = 0,
Factoring, (x — 13)(x — 33) = Q.

Therefore, x =13 or x = 33

. The value x = 13 satisfies the given equation but x =
I +33 does not and is extraneous.
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Hiustration 2.

Solve v/13 + 4v/5x — 1 = 5.
Solution: Square both sides; then

13 +4vx—1=25
or dvx — 1 =12,
or Vx—-1=3
Squaring again, x—1= N\
or % = 10, and this value satis

fies the equation. N,

Niustyation 3. ’ -\

Solve Vi +Vx+1—Vax+1=0 O
Solution: Transpose the third radical to\bhe right, gide
of the equation, obtaining

\/"+\/x+1_«/2x+‘1" (D
Squaring both sides, we obtainl
X+2‘\/"\/;(—]—1+x+1—-2x~{—1
(Note that the square, Qf #;he left hand member of equa-
tion (1) involves thessqu.l,re of a binomial quantity. Ae-
cording to Sec,{6, Formula A, upon squaring we
should have the‘}aquare of the first radlcal plus twice the

product of ‘t.he radicals, plus the square of the seeond
radical, )

Coll}z:tmg tﬂrms, 2Vxx + 1) = 0 or

Vxx + 1) = 0.
\\SQUarmg again, x{(x+1) = 0.
\ *Therefore, x =0 or x= —1

Check: forx =0,0+V1—V1i=0
forx = —-1,\/—1%—0—\/-1=0.
Although the resuli for x = —1 leads to imagin'a.ry
numbers, we have a case in which both solutions satisfy
the given equation.

Mustration 4.

Bolve \/x + 10 — = 5.

6
Vi1
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Solution: This equation may be solved either by the
method of Sec. 86, or as follows:

Clearing of fractions, x4+ 10—6 = 5V'x + 10, or

‘ _ . x+4=5Vx+ 10
Squaring both sides, »® 4 8x + 16 = 25(x + 10)
Collecting terms, x2— 17x — 234 =0

Factoring, {x — 2’6) (x4+9) = £\
Therefore, x =26 or x = —9
The value x = 26 checks, but x = —9 is exwanmﬁs

N s,,.

89. Uniform Rate Problems. N\
This class of problems depends upon the? reldtlon hetween
distance, rate, and time. ’\
If d represents distance, r represents rate, and t represents
titne, then these three quantities are r?,lat\efi as follows:
d = 1oy
_ This relationship may be solve(’l:.f(::nr:r or ¢, thus giving
= d/te\ahd t = d/T.
Tlustration 1. ,.'E": ) ' ' ) _
A man can rowdewnstream 10 miles and return in 6 hours.
The rate of phbbtream is 4 miles per hour. Find his rate
of romng\kh. still water.
Solution: Let x = rate the man rows in still water.
Tlnen x + 4 = rate of travel downstream

i and x — 4 = rat¢ of travel upstream.
\§\ - 1_ 1= time it takes going downstrcam.
o~ ‘"“\ - 1_0 1= time it takes going u_I.)st-ream.
N/ Since the sum of these timeq equals 6 hours,
X :—4 3 X — 4 =6

10(x — 4} + 10{x + 4) = 6(x2 — 16)
10x — 40 4+ 10x -+ 40 = 6x* — 96
3x — 10x — 48 =0
{x — 8)3x+8)

X =

[0
=~
o]
~t

!

]
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The physical nature of this problem as well as the
equation prohibits the use of —§ Hence his rate of
rowing is 6 miles per hour.,

Hlustration 2,
A car travelled a certain distance at a untform rate. If the
speed of the car had heen 10 miles per hour more, the
journey would have accupied 3 hours less. Had the speed

been 5 miles per hour less, the journey would have oceupied < ™

2 hours more. Find the distance and the speed. A\
Solution: Let x = the speed of the car in miles pe(hom-
= the time of the journey. (».‘;.

Then xy the distance travelled.

By the first condition the speed is x + 10 the time y — 3.
By the second. condition the speecl {s x — 5, the time
v+ 2 \ D>
The equations may be set up for the distance as expressed
by each condition.
1st case: (distanee) xy = (x + 1My — 3) (D
2nd case: b = (x — 5y + 2. (2)
From equation (1) weshave,
Xy = xy—&3x+10y~ 30 or
—3x —«I-ﬂ 10y = 30. (3)
From equatl}m (2) we have,
x¥.>=xy + 2x — 5y — 10 or
MN2x — 5y = 10. 4
Solvihg simultaneously equations (3) and (4) by any
N{eﬂmd from Chapter VILI, we find

'j.; x =50 and y =18
AN
\”\ " Hence the speed is 50 miles per hour, the time is 18
hours, and the distance 900 miles.
30. Mixture Probiem.

Tllustration 1.

The radiator of a car conta.ms 22 quarts of a mixture of
water and aleohol, the alcohol comprising 25%, How much
of the mixture must be drawn off and replaced by aleohol
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so that the radiator will contain a mixture of which 500, —
is alecohol? :

Solution: Let x = number of quarts of aleohol to be
added.

Then 22 — x = number of quarts of liquid remaining
after drawing off x quarts of the mixture.

Use the fraction } to represent 259, QS

Then, _2_?_;-_:2 = amount of aleohol in the pemhining
S\

mixture. A

22 — x

. N\
) + x = amount of aleohol in thg?\new mixture.

2\ Y

But 50% of 22 quarts, or 11 quarts) = the amount of
alechol in the new mixture. O

2 — D
2—4‘1—( +x=11_,8"
22 —x + dx = 440"

3x 282

&= 22 or 7L quarts.

Check: After 75 quarts are drawn from 22 quarts there
remain 143, divis quarts, of which 1, or 44 quarts, are
alcohol. . olthis is added 22 quarts of alcohol so that
the new mixture contains

P& = #4943 = 392 = 11 quarts of alohol
T\hu?s the solution is checked.

Hence,

£\
91. ngk Problem.

% " Hlustration 1.
M\\ " Ittakes B twice as long ag it takes A to do & certain piece

\/ of work. Working together, they can do the work in 6
days. How long would it take 4 to do it alone?

Solution: TLet x = the number of days it takes for A
to do the work.
Then 2x = the number of days it takes for B
to do the work.
"1/x = the fractional part of the work done
by A in 1 day.




SOLUTIONS OF TYPICAL PROBLEMS 109

- 1/2% = the fractional part of the work done
by B in I day.
1/x + 1/2% = the fractional part of the work done
by bothin 1 day.
By the statement of the problem, working together they
can do § of the work in one day; hence,
I/x + 1/2x = 1/6.
Clearing fractions, 6 4+ 3 =x ar .
x=0 )
Hence A can do the work alone in 9 days. O
Check: A does $, and B does 4 of the work id “She day.
Together they do ¢ 4 75 = & = % of the\“(ork in one
day. Hence it Will take them 6 days 16 complete the
work. \
K7\
92. Age Problem. o
Hinstration 1. \
A man is now three times ad OId as his son. In ten years
he will be twice as old as hrs son. Find their present ages,

Solution: Let x ~the present age of the son.
Then 3x~¥ the present age of the father.
{0 = the son’s age ten years hence.
3}; "t 10 = the father’s age fen years henee.
From thg’stfatement of the problem,
~A8x 4 10 = 2(x + 1)
& 83x + 10 = 2x + 20
s\ x =10
=N and 3x = 30.
" Consequently, the son is 10 years old and the father is
\ \3 "~ 30 years old. :

Note: A solution may also be obtained if one let
x = present age of the father,
x/3 = present age of the son.
To do so produces an equation involving fractional co-
efficients. This is of no pa.rtlcular disadvantage except
that an extra step is involved in solving the equations
when one rids the equation of fractions.
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93. Problems Concerning Levers.

Problems concerning the lever are based upon the following
formula, which expresses the physical law of the lever:

Wldl = WQdE,

where d; and d. are

the lengths of/“the

lever arms from the
. " point of sipport (or
Fig. 20 fulcrum)la\nd W, and
W are the weights {or forces) which are applied.{ ™

d

k d:
£ V_*‘*—W
FA
F
W

Dlustration. ~LY

A man weighs 180 pounds. He wishe¥ to lift a weight of
1200 Ibs. by ’:..\\. py—
means of a RS e
lever. How far """"""f.f'."'"" """"""""" = l
from the object O\

nixlust he plac‘e . Ii:;:::i“

the fulerum if O Fig. 30

one disregards
the weight of t@e lever, which is six feet long?

)
Solutiom'\\ s

Usingthe law from the principle of the lever as explained
_ ab,ove,“we have the equation,
o (6 — x)180 = 1200x
(Y 1080 — 180x = 1200x

< 1080 = 1380x |
:'\f ) X = "ig—gg = approx. .78 ft. = 0.36 inches.
Vo Hence the fulerum must be i)laced about .78 ft., or 9.36

inches, from the 1200 Ib, weight which is to be lifted_.
94, Clock Problems. '
Hiunstration 1.

In how many minutes after 8 o’clock will the minute hand
. overtake the hour hand?
Solution: Letx = the number of minutes after 8§ o’clock
in . which the minute hand overtakes the hour hand.
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Since the hour hand moves only % as fast as the minute
hand, it will move x/12 minutes while the minute hand
overtakes it. Therefore, in x minutes the minute hand
must move over 40 more divisions than the hour hand.
This is expressed in equation form as,

x — x/12 = 40
12x — x = 480
11x = 480.
Therefore, x = 437 minutes. O\
Dlustration 2. S

At what times between 4 and 5 o’clock will the ha.nds of a
cloek be at right angles?
Note: There will be two solutions to the pi'oblem
@) When the minute hand lacks 15 tinttes of over-
taking the hour hand, AN
by When the n‘unute ha,nd is 15 r{mmtes past the hour
hand.
Solution:
Case (a). \
Let x = the number of\ mmutes past 4 c’clock when the
minute hand is 15 minutes behind the hour hand.
Then x/12 w111 reRresent the movement of the hour hand
in these x tes Now, since the hour hand has a
start of 20 Jﬁﬁxutes on the minute hand, we may express
their relatwe positions as,
x—I- 15 =x/124+ 20 or

R

PRs x=x/12+5
,§~' 12x = x + 60
11x = 60
S x = B minutes past 4 o'clock,

V * Case (b).

Let x = the number of minutes past 4 o'clock when the

minute hand is 15 minutes ahead of the hour hand.

Their relative positions are then expressed by,
x=x/12-4 20 + 15

x =x/12 4 35
12x = x -+ 420
11x = 420

x = 38+% minutes past 4 o’clock.
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96, Digit Problem.
Hlustration 1.

A certain number consists of three digits. If the first and
third digits are interchanged, the number is increased by
396. The sum of the digitsis 9. Three times the hun-
dred’s digit is equal to the ten’s digit. Find the number

Remark: The notation for these problems is based upon
the fact that a number such as 327 means 3(1&0) +

2(10) + 7. N

N/

Solution: Let x = the hundred’s digit ("3’«:
y = the ten’s digit ¢ '{;
% = the unit’s digit.N

Then 100x + 10y + = represents\“he number

If the first and third digits ge Dinterchanged, the new -

number will be represented\hy 100z + 10y +x. By the
first condition of the probletn,
100z + 10y + x5 100x -+ 10y + 2 + 36 (1)
By the second condiﬁion,
Ax+y+z=190 @
By the Kh{rd GOndithﬂ
¢ 3x = y. (3)
Theae three equations may be simplified to
:~\ > X—~z=—4
N x4 y+z=9
A\ 3x — y = 0, respectively.

number is 135,

Solving this system of equations by the method of Sec.
62, we find that x = 1, y = 3, z = 5. 'Therefore, the
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INEQUALITIES

96. Definition and Symbols.

An inequality is a statement of the fact that one qua,ntitg; g
greater than or less than another quantity. The idea of meghahty
-applies only to real numbers.

Buppose that we consider two real numbers A a.nd b, and
suppose also that a is greater than b. This fact ca}rbe indicated
symbolically by a > b.

If 2 is less than b, we may write a < b. ,Note that the vertex
of the symbol of inequality always pomtsr toward the smaller
quantity. O\

Tnequalities are of two kinds. 3 .~

1} An absolute mequality is one whlch is true for all
values of the letters “nvolved.
2) A conditional mequahty is one which is true for only
certain vailueg of the letters involved.
3

Titustration 1, \\ -
(a — b)* >(0\is an example of an absolute inequality. For
regard]essxof whether a > b, or a < b, the square of the
differenge (a — b) will be a positive number and hence be
gs&atﬁr than zero.

llfu\trahon 2,
\%x — 4 > 0 is an example of a conditional inequality. For
“ if x is any negative value, the relationship is not true. If
X i8 8 positive number but less than 4, the relationship is
not true. If x = 4, it is still not true. However, for all
values of x which are greater than 4, x - 4 is a positive
number and hence greater than zero.

N
%
\ )

97. Properties of Inequalities.

If o> b, and e > d, we say that the inequalities have the
113
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same sense, since the signs of inequality point in the same
direction.

If a > b, and ¢ < d, we say that the inequalities have oppo-
site sense.

The following properties arc given here without proof.*

1) An inequality is unchanged in sense if the same
number is added to or subtracted from both sides.

Tllustration 1. A\
Since 5 > 3 A
54 4>344. A
Htustration 2. . ¢ ( 3
Since 5 > 3 .w}\\'
5~4>3—4

or 1> —1lpN
2) Aninequality iz unchang\eﬁ in sense if both sides are
multiplied or divided by the same positive pumber.
Tllustration 3. Qo ":L
Since 5 > 3 .’{}:‘
then' 5-2 > 3-2.
ustration 4. M{
Since 5 >\3\’
then 5/2 > 3/2.
3B & The sense of an inequality is changed if both sides are
7> multiplied or divided by the same negative number.
\Iﬁxstmbon b.

“‘\ Bince 5 > 3

NS then 5(—1) < 3(—1).

This may also be interpreted by saying that to change the
signs of the members of an inequality, reverses the sign of
inequality.
Ilastration 6.
Bince 5 > 3
then 5/—2 < 3/-2.

* Proofs of these properties may be found in any college algebra. 1o
‘particular see Fine, College Algebm, p. B4,
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4) The sense of an inequality is unchanged if the same
positive root or power is taken of each side.

Iljsstration 7.
Sinee 5 > 3
then 5% > 3%

Tlustraton 8.
Since 25 > 16
then V25 > V16
or 5> 4.
5) Terms may be transposed from omne side te another
in an inequality according to the ruleg,w'h‘lch hold
for equations. m'\"\.'

.\\

Dlustration 9.
f7x—-5>3x+4 \J
then 7x —3x — 5, >\4
or 4x > 4+ 5\ etc.
6) If two inequalities have ¥he same sense, their quo-

tient does mot neceg}é;arfly have the same sense.

Hiustration 10. ™

Given 8 > 6 and 2.> 1

Then the,qlhtlent 8/2+ 6/lord > 6.
(The sy‘hs{bol + means not greater than.)

Solution qf\&ﬁsolute Inequalities.
Hlustraﬁ*én'i.
4w that 22 + 1/a? > 2 if a is a positive number differ-
from 1.

NG

¢#\% Solution: By the condition of the problem

N
%
\ )

8> 0andas#=1,

With these conditions on a, we see that

either & —1/a>0 or 1/a—a>0
‘Bquaring each of these: a2 — 2 4 1/af > 0

or 1/a* — 24+ a'> 0.
In either case, add 2 to each side of the inequality and-
the expressions become the same, namely
a? 4+ 1/a? > 2,
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Tlustration 2. : )
Show that a? 4 b? > 2ab if a and b are any real numbers
such that a = b.

Solution: Using Property 1, Sec. 97, subtrzet 2sb
from both sides of the inequality, obtaining

a' —2ab -+ b?>0 or

{a — b)* > 0. .

Since a = b, then (a — h) may be either a posm% or

negative quantity. But the square of any, pomtwe or

negative quantity is always positive. Heénee the last

equation is true. All steps in the argufgent are revers-
ible by Sec. 97, so that the given stdfement is frue.

QY

Tlustration 8. \\ )
H a and b are positive numbers s(gcl 8 > b, show that a® —
B> (a — )L

Solution: Write the ,gnaen inequality in factor form
{a — b){a® + ab + b"}~> (a — b)(a — bi{a — b).
Now since a > hta — b is a positive number and we
may divide heth sides by (a — b) using Property 2,
thus giving /\

’\&?\']'—ab—l—b2> fa — b} or

(¥ + ab + b* > a? — 2ab 4+ b%
Agair’a? + b? is positive, and subtracting it using prop-
:r\ty 1, we have .

N
,\\~ ab > —2ab or
\ 3ab > 0.
R “\ ) This last result is true; hence the given inequality is true.

vV _
99. Conditional Inequalities.

Sinee these inequalities are not true for all values of the num-
bers concerned, we shail want to determine the value or range of
values for which the inequality holds. Two methods of solution
will be shown, -one algebraic, the other graphical.

Iiftustration 1. .
For what values of x is x — 8 > 07
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N®

N
%
\ )

Solution: By adding 3 to each side of the given in-
equality we have,
x> 3

Tiustration 2.

NIn order to discuss the

Determine values of x for which x® — 2x ~ 8 > 0.

Solution: This may be written

X—-4$Ex4+2)>0 N
This product will be positive if both factors are poslt;ve
or both factors are negative. The inequality, will not
hold if one factor is-positive and the other\negative.
Our problem then is {0 solve the separa.t@\mequahtles
x—4>0, x+2>0 x—4<0, %+2<0
The first two of these are satisfied if\&)> 4 or x > —2;
the second pair if x < 4 or x < &2 Hence we must
coneclude that both factors wilkhe positive if x > 4, that
both factors will be negatnfe af x < -2, These two
ranges of values therefore satisty the given inequality.

Note that if x lies he;'
tween —2 and +4 (ex-
pressed as —2{L x <
4), one factor ispositive
the otherkls negative,
0 thafo wecan conclude
that(this is the interval
i rx}neh the inequality
\does not hold.

“problem graphically we
may set y = x¥ — 2x —
8, and draw the graph
of this funetion as shown
in Fig, 31.

The values of y for
which the given inequality
holds are those for which v 'Fig. 31
is positive. From the graph
we see that y is positive if x > 4 or x < —2. For all
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other values, namely —2 < x < 4, the graph lies below
the x-axis and for this region y is negative. This means
that from the graph we can readily find the solutions of x?
— 2x — 8 = 0 as well as the solution of the given inegual-

ity.
‘Hiustration 3.
Find the range of values of x for which _ O
XxX—3 O\
12 > 0. o

N

Solution: Smce this fraction must be poai‘ﬁ«ve, we mush
have both numerator and denominator’ pomtwe or have
both numerator and denominator nega}we But an ex-
pression changes sign from positive to negative by pass-
ing through the value zero. H,e':}de we wish to note the
values of x for which eithgr\tﬁé numerator or the de-
nominator takes the valug wgero. Thus the changes. of
sign occur when x =syor x = —2 and for no other
values. The whole*x,ams is therefore divided into three
ranges of values. Those for whichx < —2, -2 <x <3,
and x > 3 '

I
v
|

Fig. 32
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If x < —2, both numerator and dencminator are
negative and the quotient is positive.

If —2 < x < 3, the numerator is negative, the de-
norninator positive, and the fraction is negative. (These
are the excluded cases for the given inequality.)

If x > 3, both numerator and denominator and the
fraction are positive.

Hence we must conclude that the inequality is satlsﬁed

for all values of x which lie in the ranges for yhich

x< —2and x > 3, §\
The graphieal interpretation for this prob]em 15 shown in

Fig. 32. 1t is seen that the graph of y = ’-—"é\kes above the

x-axis for all valuesof x > 3 and all values of X&) \2 2. The curve
has an asymptote for x = —2, and a ZETO, for x = 3, and these
are the values for which the factors of\ﬁhe denominator and
numerator each vanish. \/

¥
£



CHapter XIV

LOGARITHMS
Q.

100. TIrrational Exponents. A

In Chapter IV, we defined the meaning of an exponeﬁ"t when
the exponent was a positive or negative integer or frgqtion. Thus,
2" = 2-2-2 =8, and 4" means the square root gf.the cube of 4,
and equals 8. However, we have not as yet defined the meaning
of a7, where a is a positive number and x is‘ah.drrational number.

In order to generalize the use of expenents, we shall now
assume that the laws of exponents hol\éi;}or irrational ag well as

rational indices. By making this agsumption we may now attach
& meaning to such numbers as 3¥2. _:By actually extracting square
roots it can be shown that the %2 may he successively approxi-
mated as 1.4; 1.41; 1.414; 1.4142; etc., and thus we may approxi-
mate the value of 32 by wiiting successively:

37 g approximately 314 — 318

3v2 '@abpmximately 3t4 = g

3% approximately 3!44 — 3uM

- T

\¥ =
Each appxéximation gives a more correct value of 3¥2. Since V2
may bg“defined as a limit of a sequence of rational values, then
3% may be defined also in terms of limits. In general, it can be
proved in advanced mathematics that if x approaches a limit,
. [akd if & is a positive number, a* will have a limit. In this sense
\Jwe define a~ ag the limit approached when x iz an irrational
quantity. In otherwords, we are extending the laws of exponents

to include irrational as well as rational indices.

101. Definition of Logarithm,

The logarithm of a number M is the exponent X, indicating
the power to which some base number a must be raised in order

to equal M. The base number a must be positive and different
120
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from unity. This latter restriction is due to the fact that all
powers of unity equal unity.

For example: 2% = 8. Here the base is 2, the exponent (or
logarithm) iz 3, and the number is 8. We say then, that 3 is the
logarithm of 8 when the base is 2, & fact which we usually sym-
bolize by writing: '

log. 8 = 3. . A

An alternative notation for defining a logarithm is as follows?

If a= = M, wherea > 0, 2 # 1, then <\

x = log, M. \ O
[This last statement is read, x is the logarif,hﬁi of M to
the base a.)] m;\‘

Certain restrictions have been placed on the values of a, x,
and M. The base a has been restricted to. pdsitive numbers. If
a could have negative values, then somp’\i:i@sitive numbers would
have no real logarithm. For examplgy3{a = —2, then (—2)* = 8
cannot be satisfied by any real pumber x. If the base a =1, -
then 1% ig always equal to 1 for@ll real values of X and hence no
other numbers M could be gxpressed as 1= = M. The numbers
M have been restricted to“positive values. Yet in advanced
courses this restriction may be removed and one may discuss the
logarithms of nega i(e.,ﬁnd complex numbers.

With the definition of a logarithm as given, every positive
nunber hag a unidue logarithm and every logarithm represents a
unique nurpbe?.

Illgsﬁ;ittian 1.
¢'The following columns list by pairs, statements which are

3 “equivalent.
SN

~\ 2 = log: 8 = 3
~ B = 4 log, g = 4
16172 = 4 logy 4 = 3

858 = 32 Ings 32 = § -

22 =3 . fog: (}) = —3

1

912 = loge 3) = —3

The left hand column gives the statement in exponential
form., The right hand column gives the corresponding statement
in logarithmic form. Opposite stalements express the same fact,
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and the student should become sufficiently familiar with the two
notations to be able to give the second statement whenever either
of a palr is given.

102. Properties of Logarithms,

Sinee a logarithm is an exponent, we might suspect that the
properties of logarithms reflect properties of exponents. This Is
true, and for that reason we should now recall the followil\g@hree

7

facts coneerning exponents: 2N\
N
go -0 = am.-[—n’ am =+ gt = am_n, (am)n (=“§.m-n.
We now develop three theorems concerning logégithms, each of
which corresponds to one of the above laws Gf 8Xponents.

Theorem 1. The logarithm of the product of two num-
bers is equal to the sum of the lpfarithms of the numbers.
In symbols: log. M -N = logi M + log, N.

Proof: Leta™ = M and a¥t & N. {1

Then log, M = x andlog, N =y, - @)

Now form the product ef the two statements from (1).
8- gy = MO N '

or a¥¥ <\M - N, (3}

The corresi?cmii’ng logarithmic statement from (3) is |
W log. M-N=x+4y
But by.(2) = log, M + log. N.
NS
‘Theérem 2. The logarithm of the quotient of two num-

bers"equals the logarithm of the numerator minus the
\.@ogarithm of the denominator.

N ie.. loga M/N = log, M — log, N.
”\ v/ Proof: From (1) above, form the quotient
\ ax M
- = == = OI¥
o TN < F

Then log. M/N =x —y
' = log. M — log, N.

Theorem 3. The logarithm of the kt power of a number
equals k times the logarithm of the number.

t.e., log, M* = k. log, M,




LOGARITHMS 123

Proof: Let a= = M and raise both sides to the kt
power. Then
ak = MK
Writing this in logarithmie form gives
logs M* = kx = k-log. M

The index k may be any constant. If k is a fraction,
we have from the relationships between fractional ex;
ponents and roots, & means of expressing the logarlthm

of the root of a number. Thus, ¢\ \
_ N
log, VM = log, M2 = % log, M. A

log. VM = log, M'# = £ log, M,jétc.‘:
In general, log, VM = log, MU = % Ioﬁﬁ-
1llustration 1. .\\,‘
{(571)3(1.87) '
32.6
the logarithms of the factors.

Solution: By Theorems,i and 2

log, %’Q Iog (571)3 + log. 1.87 — log, 32.6
By Theorem &,\

\\ = 3 log, 671 + log, 1.87 — log, 32.6.

Hlustration 2. ;"
Express lﬁgﬁ “\/75 in terms of the logarithms of prime

Express log, as an algeﬁré.ic sum in terms of

numbcr&
Sgl.utxon Bince 75 = 5% 3
10ga V75 = 3 log, 75 = +log, 5 -3 = § [log. 5° + loga 3]
~"\ = 1[2 log. 5 -{--log;a 3] = log,5 +1 loga

\ ) Ilustration 3.
Express 2 log 34log 14 +log 5 —log 3—log 2 as a
single logarithm.
Solution: Using the theorems, we have
2log 3 +log 14+ log 5~ log3 — log 2 =
fog 32 +log 14  log 5 —log3 —log 2 =
3-14-5 ’

IOg—E—.'—z—“ =Iﬂg3'7'5=1ﬂg 105.



124 COLLEGE ALGEBRA

Iftustration 4.

Show that Theorem 1 may be extended so that
logs L-M - N = log, L + log, M + log, N.

Solution: Let LM = Q, then by Theorem 1
leg, QN = log, @ + log, N.
= log, LM + log, N
= log, L + log, M + log, N: {\

103. Common Logarithms. Oy

Since our number system is built upon 10 as a Hasis, we find
it most convenient to use 10 as the base of a systed® 6;” logarithms.
Common logarithms are those for which the base10 is used. Un-
less otherwise specified we shail use base a(%"10, and the base
will not be indicated. Thus logy, 17 will sithply be written log 17.

In order to have an understandipg‘éf the use of logarithms

1t is convenient for us to study the-parallel columns of the data
which follow. : Y

Powers of 10, N N Logarithmic notation.
10¢ = 100" log 1000 = 3
102 = jbo log 100 = 2
104,="1 log 10 = 1
1982 1 log I =0
IO = = 1 log.1=—1
PRZo (U SR log .01 = —2
AV 107 = e = 001 log .001 = —3
2\ ~\ eto. ete.

If we confine our attention to integral powers of ten, the
logarithms may be obtained from the above chart. But suppose
that we wish to find log 253. '

Since 10? < 253 < 105,
then 2 < log 253 < 3.

If we let x = log 253, then 10* = 253, and we may write
2<x<3or

X = 2 + (some decimal value),
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the added quantity being less than 1. This decimal part
i called the mantissa of the logarithm. The integral part
(such as 2 above) is called the characteristic. The mantissa
can be found from computed tables such as those shown on
pages 126 and 127. Using these fables we find the amount
to be added. _

" The table gives the mantissas to four significant figures
for three figure numbers.* 1

The first two digits of the number are given in the left hanq
column under N, and the third digit is arranged across the\top
of the page. Thus, to find the mantissa for 253, look under’col-
umn N for 25 and across under the column labeled 3,. *Hére one
finds the mantissa for 253 given ag 4031. Consquegtly,

log 253 = 2.4031. x\\

Numbers like 00253, .0253, 253, 2580@0‘,’and 0.253 are said
to have the same sequence of nglts Ja ascertaining the se-
quence of digits, initial and final zeres are disregarded.

Buch numbers, however, haVG different logarithms. The
mantisea for each of these numbers is the same, but the charac-
teristic is different. ‘Thus, 020253 lies between 0.01 and 0.1; hence
its logarithm lies between,~2 and —1. A mantissa is always a
positive quantity. If‘order to avoid confusion in computation,
it is customary toy *wrlte a negative characteristic like —2, as
8- 10. >

With tl"lis\_é:oﬁvention, we may now write

AN\ log 0.0253 = 8.4031 — 10.

_ 'I,r,l:h. similar way,
\ ) Iog 0.00253 = 7.4031 — 10
log 253000 = 5.4031,

The mantissa is the same for all numbers which have the
same sequence of digits. The mantissa iz always a pomtwe deci-
mal fraction.

and even twenty place tables are available for

* Five place, seven place,
i~ b however, is sufficient for a study

computing purposes. The four place table,
of the theory and use of logarithms.
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N 1] 1 2 3 3 6 [ 7 8 9

10 | 0000 0043 0086 0128 0170 | 0212 0253 0204 0334 0374
11 | 0414 (453 0492 0531 0569 | 0607 0645 0682 0710 0755
12 | 0702 0828 0864 0899 0934 | 0969 1004 1038 1072 1106
13 | 1139 1173 1206 1230 1271 | 1303 1335 1367 1300 1430
14 | 1461 1492 1523 1553 1584 | 1814 1844 1673 1703 1732
15 | 1761 1790 1818 1847 1875 | 1903 1031 1950 1087, 2014
18 | 2041 2068 2005 2122 2148 | 2175 2201 2227 2253 2279
17 | 2304 2330 2355 2380 2405 | 2430 2455 2480 2504\ 2520
18 | 2553 2577 2601 2625 2048 | 2672 2605 2718 2742/)2765
19 | 2788 2810 2833 2356 2878 [ 2000 2023 2045 (2987 2989
20 | 3010 3032 3054 3075 3096 | 3118 3130 3160A 3181 3201
21 | 3222 3243 3263 3284 3304 | 3324 3345 ©38B5 ¢ 3335 3404
22 | 3424 3444 3464 3483 3502 | 3522 35414 3560 3579 3598
23 | 3617 3636 3655 3674 3692 | 3711 3720\°3747 3766 3784
24 | 3802 3820 3838 3856 3871 | 3802 80Q% 3027 3945 3962
25 | 3970 3097 4014 4031 4048 4{)6&\4082 4009 4116 4133
26 | 4150 4166 4183 4200 4218 e&gz 4249 4265 4281 4208
27 .1 4314 4330 4346 4362 4378 K4B03 4400 4425 4440 4456
28 | 4472 4497 4502 4518 4533 DAG48 4564 4579 4504 4609
29 | 4624 4630 4654 4669 46837} 4608 4713 4728 4742 4757
30 | 4771 4786 4B00 48144820 | 4843 4857 4871 4886 4900
31 | 4914 4928 4042 4055% 4069 | 4083 4907 5011 5024 5038
"82 | 5051 5065 5079 B092 5105 | 5119 5132 5145 5159 5172
33 | 5185 5108 521¥N\5224 5237 | H2A0 5263 5276 5280 5302
3 | 5315 5328 534\0 5363 5366 | 5378 5391 5403 5416 5428
35 | 5441 545{\\5465 5478 5490 | 5502 5514 5527 55390 5561
86 | 5563 BATSNVO587 6500 5611 | 6623 5635 HBA7 5658 5670
387 | 5682 BoD4 5706 B7L7 5720 | 5740 5752 5763 575 56786
38 | S7T9R(BB0O 5821 5832 5843 | 5855 5866 5877 5838 5809
i3] 5911 5022 5033 5044 5055 | 5966 5977 5988 5999 6010
4-0:‘~6021 6031 6042 6053 6064 | 6075 6085 6096 6107 6117
41\}-6128 6138 6140 6160 6170 | 61R0 6101 6201 6212 6222
421 6232 6243 6253 6263 6274 | 6284 6294 6304 6314 6325
©43 | 6335 6345 6355 6365 6375 | 6385 6395 6405 6415 6425
W44 | 6435 6444 6454 6404 6474 | 6484 6493 6503 6513 6522
45 | 6532 6542 6551 6561 6571 | 6580 6500 6599 6609 6618
46 | 6628 6637 6646 6656 6665 | 6675 6684 6603 6702 6712
47 6721 6730 6739 6749 6758 | 6767 6776 6735 6794 68503
48 | 6812 6821 6830 06830 6848 | 6857 6866 6875 6884 6893
49 | 6902 6911 6920 6928 6937 | 046 6955 6064 6972 6981
S0 | 6990 6998 TOO7 7016 7024 | 7033 7042 7050 7059 7067
B1 | 7076 7084 7003 7101 .7110 | 7118 7i26 7i35 7143 7152
6% [ 7160 7168 7177 7185 7i93 | 7202 7210 7218 7226 7235
63 | 7243 7251 7250 7267 7275 | 7284 7202 7300 7308 7316
G4 | 7324 7382 7340 7348 7356 | 7364 7372 7380 7388 7396




127

LOGARITHMS
LOGARITHMS

N 4] 1 2 3 1 B [ 7 8 9

§5 | 7404 7412 7419 T427 7435 | 7443 T451 7450 7466 7474
E6 | 7482 7490 7497 7505 7513 ! 7520 7528 7536 7543 7551
BT | 47550 7566 TH74 7582 7580 | 7597 7604 7612 7619 V62T
BR | 76314 7642 TR40 THRT TE64 | T672 7679 7686 7694 7701
B9 | 7700 7T 7723 7731 7738 | 7vd4s 7752 VT6C 7767 U774
60 | 7782 Y780 7796 7803 7810 | 7RIS 7825 Y7832 7830 7846
81 | 7853 TEA0 T8GR . 7875 TRYZ | 78R0 780G 7003 7910 7O17
82 | 7924 7031 7938 7945 7052 | 7859 7966 7973 7980 7BV
63 | 7903 3000 SD0T 8014 8£021 | 8028 8035 8041 8043 8055
6L | 8062 8060 8075 8082 8089 | 8006 8102 8109 81168122
65 | 3120 8136 8142 8149 8156 | 8162 8169 8176 183 8180
66 | %105 8202 R200 S215 8922 | 8228 £235 8241708248 8254
87 | S261 8267 8274 K280 S287 | 8293 8200 830G “8312 8319
68 | 8395 £33]1 8338 8344 8351 | 8357 8363 WINQ° 8376 5382
60 | R3RS 2305 B840t S407 8414 | 8420 8426\B432 8439 8445
70 | 8451 8457 B463 B84ATO B476 | 8482 548}’ 8404 8500 8506
71 | 8513 8510 8525 8531 8537 | 85438549 8555 8561 8567
79 | 8572 9579 8585 8501 8597 | 8603, )S609 8615 8621 8627
73 | =633 %630 ®645 8651 8657 | 9663 8669 8675 8681 8636
74 | %602 SGOR 9704 8710 8716 [ 8722 8727 8733 8739 8745
75 | %751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 | 8808 8814 8820 BR825 3831 | 8837 8842 8848 8854 8&50
77 | %865 8871 876 SSR2NBR8Y | 8803 8800 8904 8910 8Oi5
78 | 8021 8027 8032 8998 8043 | 8040 8054 8060 8065 8071
79 | so7e 8082 80878093 BO08 | 9004 9009 9015 9020 025
80 | 0031 9036 96%%"9047 052 | 9058 9063 9069 9074 9079
81 | 0085 Q000 50098 0101 9106 | 9112 9117 9122 9128 9133
82 | 0138 0301490 9154 9159 | 9165 9170 9175 0180 9188
83 | otg1 9196’ 9201 9206 9212 | 9217 9222 9227 9232 9233
84 | 9243 gzges 9253 0258 0263 | 026G 0274 9279 9284 9280
a3 gi\‘9200 0304 0300 9315 | 9320 9325 9330 0335 9340
88 %«5 0350 0355 9360 9365 | 9370 9375 0380 9385 9300
87 [{o%05 0400 0405 0410 9415 | 0420 9425 0430 9435 0440
B 0445 0450 D455 9460 9465 | 9469 9474 0479 9484 9489
88 9404 0400 9504 9509 95313 | 9518 9523 9528 8533 9538
‘00 | 0542 0347 0552 OBST 0563 | 0566 0571 9576 9581 9586
91 | 9500 0505 0600 9605 90609 | 9614 9610 9624 9628 9633
92 | 9633 0643 0B47 0652 0657 | D66L 9666 0671 9675 9680
93 | 0g’s OBRe 0604 9699 9703 | 9708 9713 9717 9722 9727
94 | o731 o736 o741 9745 OTS0 | 9754 9759 9763 g768 9773
95 | orrr orse o7se 0791 0795 | 9800 9805 9809 9814 9818
96 | 9823 95.27 gR32 R3¢ D84l | 9845 9850 9854 9859 0363
97 | ozes 0972 0877 9R81 088G | 9800 9894 O399 0903 9908
98 | go12 0017 90021 0926 9030 | 9934 9939 0943 0048 9952
99. | 0056 0061 0065 0069 9974 | 9978 9983 0987 0091 9996
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104. Rules for Characteristic,

There are two rules for determining the characteristic of a
logarithm. They are found by inspection from the chart of powers
of ten in Sec. 103. Any number which lies between 100 and
1000 will have & characteristie equal to 2, and all numbers in this
interval have three digits to the left of the decimal point. All
numbers -between 10 and 100 will have characteristic 1, and such
numbers have two digits to the left of the decimal point. “Fhe
general rule may be stated as follows: Ko N

Rule 1, O

If the number N is greater than 1, then its ﬂharacterlsmc
is one less than the number of digits to the lﬂft of the deeimal
point. .

If the number Hes in the interval from zero to 1, we may
find its characteristic according to, /0

 Rule 2. \"

If the number N is less tian" Unity, and if the first digit
which is not zero occurs iny i',he ktt decimal place, the char-
acteristic is — k. R

Tlustration 1, \ 3
Write the charagteristic of the logarithm for each of the
following nuqbe&s 287, 3.47, 9640, 0.124, 0.00820, 0.000703.

Solutlon\\Usmg the above rules we have,

287 has characteristic  2;

34 > has characteristic  0;

;\:9640 has characteristic  3;
(y¥0.124  has characteristic —1 or 9 — 10;
L\ 000820 has characteristic —3 or 7 — 10;

80N 0.000703 has characteristic —4 or 6 — 10.
m: “\' Iustration 2.
N/ Write the logarithms of each of the numbers in Illustra-
tion 1 (use tables pp. 126-127).

Solution: log 287 = 24579
log 3.4 = 0.5315
log 9640 = 3.9841
log 0.124 = 9.0934 — 10

log 0.0082 = 7.9138 — 10
log 0.000703 = 6.8470 — 10.
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106. Use of Tables.

The tables of mantissas may be used for two purposes. One
may find from them the logarithm of a given number, or find the
number corresponding to a given logarithm.

@) To find the logarithm of a given number.

Niustration 1.
Find log 29.6. .
. 2N
Sclution: From the table on pp. 126-127, under edluinn
N, find 29. Opposite 29 and under the column Jabeled

6 one finds the mantissa 4713. ~
Hence, log 20.6 = 1.4713 since its chatdeteristic is 1.

b To find the number, given its logarithras"
N
Tilustration 2, SV
Find the number whose logarithnt'is 7.5843 — 10.

Solution: We have giveRMlog N = 7.5843 — 10. We
must loeate this mantissa in the table, find the number
which corresponds tavit, and place the decimal peint in
accord with ruled¥or characteristics. In the table, pp.
126-127, we fingd" that the mantissa 5843 corresponds to
the digit.sehlience 384. Since the characteristic is —3,
we mustwfgave two zeros following the decimal point and
the firgé-hon-zero digit in the third place.
~';\He11ce N = 0.00384.

-
’§“.
108. \Interpolation.
~ O¥requently one wishes to find the mantissa for a number of
\four or five digits. Since these are not given directly by the
table, we must devise a means for estimating the value of the
mantissa. The process by which this is done is called interpola-
tion, since it involves placing values between known values from
the tables. _
We assume that for small changes in the number, there will
be a corresponding small but proportional change in the mantissa.
A few illustrations should make the method clear.
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Mustration 1.
Find log 752:3.

- Solution: Since this number does not appear directly in -
the tables, we take the two values closest to it which do
appear. Using the tables, we find,

log 752.0 = 2.8762 } .

log 7523 = 9 } 0006, O

log 753.0 = 2.8768 O\
The difference between the mantissas is .09@6.“’We as-
sume the difference between the mantissa given and the
mantisss, we want is some value x. Zhe number 7523
lies & of the way from 7520 to 7530." Hence we may
write, \4

x/.0006 = & or x =.00018 = .0002.
Adding .0002 to the mantissh 8762 we have .8764 and
may now write O
log 752.3 = 2.8764.
Note: We keep }'gi]l" mantissas to 4 decimals. Hence
00018 was called*0002. If the amount added is a value
like 00075, &we" call it .0008 or .0007 according as the
amount added makes the final digit even. This is an
old practice known as the co'nputer’s rule.
Tiustration 3.
Fisd N if log N = 8.375¢ — 10,

:';\.‘Solution: This mantissa does not lie in the table. We
O\ take the tabular values on each side of it and write the

N numbers corresponding to them:
AN _
”'\; . 2370 corresponds to .3747
N\ x 0007
10 ? corresponds to ,3754 0019,

2380 corresponds to .3766

The correction to be made on 2370 is called x. Now
3754 lies {4 of the way between the given mantissas.

We must determine a value x which lies 4% of the way
between 2370 and 2380. '
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Hence x/10 = 15 or x = {3 = 343 (called 4).
The digits of the number are then 2374.
Therefore N = 0.02374,
The number eorresponding to a given logarithm is called an
antilogarithm,

107. Computation Using Logarithms.

Illustration 1.

Find N if N = (2780039 \

17.6 R\
Sclution: The logarithmic statement is
(278) (.0034)

7

- = log 278 + log 0034 log 17.6.
Now, log 278 = 2.4440 O
log 0034 = 7.5316 — 10\ "
Adding 9.9755 ~\10
Also,log 176 = L2455\ <
Subtractmg, logN = 8.7300 — 10
Therefore, N =y ;0537

IBustration 2. 4

37)(246)

Solution :{ log N= [log 63.7 + log 246 — 2 log 13.2).
Now Iog 63.7 = 1.8041
/log 2.46 = 0.3909

s{aﬂ‘ing © 2.1950 - (L)
log 13.2 = 2.2412, @)
“\' % Before (2) can be subtracted from (1) we must write (1)
~\J as: 12,1950 — 10
A Repeat (2) 2.2412 _
Subtract  9.9538 — 10. (3)

Before taking 4 of this value Sve write (3) in the form
20,9538 — 30 so that when it is divided by three, we
shall have the 9 — 10 form for the characteristie. If
{3) is divided as it stands, one gets

99588 — 10 _ 33179 — 33338
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and one must actually perform this subtraction to find
the logarithm.

However, log N = £(29.9538 — 30) = 9.0846 — 10
and N = .9652.

Ilustration 8.

log .016 ~
log 5.2 .
Solution: Note, that this is the quotient of jg\w"afloga.-
rithms, and not the logarithm of a quetient, dovered by
Theorem 2. Consequently we have ugmi’:’ﬁnding the
logarithms, .\.\%

Solve for x if, x =

_ 82041 — 10 W
0.7160

But now our problem present{‘aﬁ(;ther difficulty. The
logarithm 8.2041 — 10 or <2 3 .2041 represents a num-
ber composed of —2 pluswé positive mantissa. On a
linear scale one can intéfpret this as a number obtained

by adding 2041 to & 2'on the scale.

One must fratslate this number
-2 -[;-"&2041 or —1.7959

S S S N

=3\ -2 -1 0 1 2 3 i

into.@n ordinary negative number by adding .2041 to
"\—\2, thus obtaining —1.7950.
\%”' Equation (1) may now be written as
D | —1.7950

\ X = "7160 and by actual division
) x = —2.508.

The division above can also be aecomplished by use of
logarithms. Ont disregards the negative sign and pro-

L7959
ceeds to compute the value of x from log x = log 1—7@6’
= log 1.7950 — log .7160. The final result is assigned

the negative sign since the algebraic result is itself
negative.
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108. Colegarithms.

The cologarithm of a number is defined as the Ioganthm of
the reciprocal of the number. Thus
Colog N =log /N =log I — log N
=0—logN = —logN
= 10.0000 — 10 — log N.

Tlustration 1.

Find colog 16.4. )
NS
Bolution: Colog 16.4 = log 1 — log 16.4 D
= 10.0000 — 10 ~ON
minus 1.2148 ) \\
eolog 16.4 8.7852 — 10X

Computation may be carried on using)cologarithms in-
stead of logarithms for cases suchQ e following:

Tlustration 2.
173 s.’:'..
log 5.4 log 173 — log 54’
= log 173 + colﬁg‘5.4.
108. Exponential and gogamthmm Equations.
An exponential eq\atwn ig one in which the unknown occurs

a3 an exponent. \ “} "’

Illustratlo'ﬁ\l

4= 3\64 and 2= - 3x+1 = § are exponential equations.
A Jogarithmic equation is one in which the logarithm involves
the unknown guantity.

\ 4 Iﬂustratwnﬂ
log (x* — 5) = 2 log x, and log x + 5 = 10 are examples
of logarithmie equations.
The following illustrations are given to show methods of solv-
ing exponential and logarithmic equations.
Dlustration 3.
Solve 3> = 2= for x.
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Solution: Take the logarithm of both numbers and
log 3= = log 2=
(x— 1 log3 =xlog 2
xlog3 —log3 =xlog2
x(log 3 — log 2) = log 3

log 3 0.4771 A
X = log3—log2 (04771 — 0.3010) .
04771 R\,
=o.a761 ~ 2700 O

where the result is given to four mgmﬁcant \figures.

Tustration 4. _ ‘~~z\
Solve, logx — log (x — 9) = 1. !

%

Solution: 'This may be “'ritt{li\,}
log —x—-v‘:—-“xl

Writing this in expcmentlal form

?}é = 10" = 10

i.~§ x = 10x — 90
7 =90
O x = 10.

\<&
110. ThQGraphs of Exponential and Logarithmic Equations.

{owsider first the graph of y = 2= Construct a chart of
va,}}s ag helow.

‘0
.’\’
@

Q x—3_21-101'234

——

—_— |———

vy a ¥l a1 |2]a]|s [

| E—

The curve obtained from the points of this chart is shown in
Fig. 33. 1Ii is characteristic of the appearance of all exponen-
tial functions for which y = a*, where a > 0. The exponential
eurve y = 2= is shown in the same figure as a dotted line cul'\’e '

1% is characteristic of the shape of all curves of the form ¥ = ™
where a > 0,
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Fig. 33 v

Now consider the graph of tht-::curve y = logz x. Construct

the chart: &
MR \ 1 2 1a]|s |16
y | —3| —24 '\3 1ol 1lz2 ]3]z«
- N R . .. —

N/

The gra h of the
data of thi§ chart is
shown.@‘ig 34. The
curvd'y = log, x is
c}:aracterla’mc of the

pe of all funetions
of the type’ y = log.x,
where a > 1. If
a < 1, the graph of
sueh functions will
look like the dotted
curve in Fig. 34,
which shows the graph of y = logs x.
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111, Change of Base.

One of the fundamental uses of the theory of logarithms and
exponentialy is to express a given number in terms of different
bases.

How this may be done is shown in the following illustration.

IMustration 1. ~
Express 17 as a power of 3. \

Solution: This problem is equivalent to sa.ymg ‘ﬁnd the
logy 17. It is solved in the following way: .

Let 3= = 17, and take logarithms of both &des to base

10; then : LV
log 3= = log 17, \
xlog 3 = log 17, N\
_ log 17 12394 ¢
“loga ~oagn 28 (approx.).
With two place mgmﬁ(;ant ﬁgures we may then say that
17 = 32 58
The general formula for cha.nge of basge is
y log, ¥
m\ logb N = oz, b

and expresses thé\[‘oganthm of N to base b if a table with base a
is given.
This ral&tronsmp is proved as follows.
Suppase’ the number N is expressed in two different bases,
\“\ = a% = b¥, g0 that
N a* = p¥,
} . Ta.ke the logarithm of both sides to base'a,
) log. 8= = log, b¥ or
xlog.a = ylog, b, and since log.a =1
x=ylog. b
But x =log, Nandy = log, N, so0 that
logs N = log, N - log, b or
logy N = log, N
log. b

There is an irrational number e = 27182 . . . , called the



LOGARITHMS 137

natural base, which plays an important role in the theory of
logarithms. Its value and definition are usually given in a eourse
in caleuius, However, logarithms to the base € may be computed
from a table of base 10 by means of
N — Iﬂgm N

log e

Iogn e = 4343 . , 1/logy e = 2.3026 . \
The logys e is known as the modulus of common logarlthms jwth

respect to natural logarithms. Its value may be used as a\\con-
version factor to change from base 10 to base e.

log,

Hlustration 2,
Express log, 16 in {erms of the IOgarlthmwtbll base 2.
Solution: From the formula for change of hase, one has
_log16 _ (B
log, 16 l_gg T g\a 2

a8 could have been sta.ted‘.’a ‘once from the definition.

The student need not remeriber the formula for change of

base, if problems are solved by }.‘he method of the first illustration
in this article. “
&

\'\.\ e
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CHarTER XV

PROGRESSIONS
. ~

112, Introduction.
A progression is a sequence of numbers formed accordmg to
some law. We shall consider three types in this- chapter arith-

metic progressions, geometric progressions, a,nd h&nnomc pro-
gressions.

..,\‘
113. Arithmetic Progressions. :

Definition: An arithmetic progressroh 1s a sequence of num-
bers each of which differs from the ohe ‘which precedes it by a
constant amount called the commogt difference.

If the terms of the progression-are in an increasing order, we
shall consider the common dlﬁercnce to be positive. An example
of such & progression is, N

~3,6,9,12 . ..
in which the common difference is 3.

If the tenna\gppear in decreasing order, we shall consider

the common dlfflarence to be negative. An example of this type is,

2NOT 92,90, 18, 16,
in whi(;l(t}é common difference is —2. _
%Shall also adopt the following notation in our discussion
of,ap

thmetic progressions.

~ ‘ ) Let a, represent the first term of the progression,

\/ d, represent the common difference,
n, the number of terms in the progression,
l, the last torm (n™ term) under consideration,
8, the sum of n terms of the progression.
We shall call these five letters the indices of the progression.

114. Relationships among the Indices (AP}

We wish now to consider relationships among these five in-
138
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dices which will enable us to determine the numerical values of
all of them provided any three of them are known for a given
progressic.
We note that if a is the first term and d is the common dif-
ference, then
a4 d = 2nd term,
a -4 2d = 3rd term,
a + 3d = 4th term,
etc. O\
In general the nth or last term I is given by e\
I=a+(n—1)d AT
That the ccefficient of d is (n — 1) is seen by mspectlon For we
note above that the eoefficient of d for any pamculhr term is
numericaily one less than the number of the termh.v
We now assume that we have an arithmetic progression con-
sisting of n terms, with first term a, and la'gb rm . The next
to last term may be written as ¢ — d, Jihe/term preceding it as
I — 2d, ete. The sum of these n terms may be written as
s—a+(a+d)+£a+2d)+ _
+d—2d) + =+, (2)
where the sequence of dots mdlcabes that some of the intermediate
terms are not shown.
If the progressio \remitten in the reverse order, one has,
s_ziw—dy+a—mn+
+ o 2d) + (a + d) + a. (3)
Upon addirig)the expressions (2) and (3) one obtains
(2=(a+D+@+h+@+D+ ...
Nt @D+ @+ a+D.
Smee the progression contained n terms, there will be n of
th‘iﬁe “usntities {(a + I); so one may write,

2s=nfa+1I) . or
S—-@+D 4)

Equations (1) and (4) make it possible for us to find values
for all of the five indices whenever any three of them are known,

Ikastration 1. )
Find the sum of all the numbers between 1 and 100 which

are divisible by 3.
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Solution: These numbers form an arithmetic progres-
gion with firet term a =3, d = 3 and I = 99. Using
these values in equation (1), we have
W=3+n-13 or
99 =3+3n—3
99 = 3n
n = 33,
The sum may now be obtained from eguation (4),
s = n/2(a + 1) = 33/2(3 + 99) = 33/2(102) = 33. olox=‘1683
Tlustration 2. sﬁ.
Find a and n, if given d = 4, 5 = 7, andl: 13

Solution: Sinee [ =a 4+ (n — 1)d'm'\
13 = a -+ (n — \NdV

a=17 — 41},\\“’
But B = n/2(a{—'~l) = n/2(17 — 4n + 13)
7 = n(}8+ 2n)

2112—1511-{—7—0
0r(2n——1)(n—7)1~0

But since n must, be a pocsltwe integer,
and N = 17 —4n = 17 — 28 = ~11L

116. Geometric i&}ogressions

A geomgmt progression is a sequence of numbers such that
any term after the first is obtained from the precedmg term by
multiplyig it by a fixed number called the common ratio. The
sequente

A\ —4, -2, =1, =4, —-1, ...
is a geometric progression with ratio .

116. Relationships among the Indices (G.P.)

For a geometric progression, let a be the first term, r be the
common ratio, I the ntt term, s the sum of n terms.
Then ar = second term,
ar? = third term,
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and ! = ar>! = nh {erm, (1)
The sum of these n terms ¢an be written,
s=a4ar4art+ad+ ... 4 arnt, (2)

Now multiply each term of (2) by r, and
rs=ar+ar’+ar+ar+ ... arrlfar (3)
Subtracting (3) from (2) gives

8-~—~T8 =48 — ar" or

s = E(L_—-r—), providing r s 1. . \(43
l1—r . O
Since ! = ar®~! this may also be written, . :":'«:
a —rl ' ¢*0
8 = l_r’r¢1. 'w'\\. (5)

These formulae enable us to find all of the.indices for a G.P.,
whenever any three of them are know, &

Ulustration 1. Y
In a GP,a=1,n=3, a@;fd’..sw= 57. TFind values of r
satisfying these conditiong aa:td write out a few of the terms
of the progressions whjc]::'afe determined.

Solution: By fatnrula (4) 57 = i - f’ or
L\ 57=1+r+1r

O 4r-5=0
2O @+ -1=0
(N sothatr="7orr= —8§8
PR 4 .
,gen'be, there are two progressions determined:
i ,f:‘. If r = 7, the progression is 1, 7, 49, . . .,
~O If r = —8, the progressionis1, —8,64, . . . .

\
) 2

117. Harmonic Progressions.

A harmonic progression is a sequence of numbers such that
the sequence formed from the reciprocals is an arithmetic pro-
gression.

Dlustration 1. :
Show that &, 1, 3, ete., is a harmonie progression.
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Solution: Forming the sequence of the reciproczls of
these numbers gives,

3, 5, 7, ete.

This last sequence is an arithmetic progression; hence,
the given sequence ig harmonic.

The indices for a harmonic progression are found by first
writing the corresponding arithmetic progression, then translating
this information according to the definition of harmonic progres-
sion. No general formula is given for the sum, and them\!s no
common difference or common ratio. . @

7
4

118. Means. O

The terms of a progression between any't{i’o given terms are
called the means between those two ter

If the progression is arithmetic, 0{1@ apphes the name arith-
metic means; if the sequence is geomiefric or harmonic, cne applies
the terminology geometric or ha,rmomc means.

The problem of insertingmeans does not present any new
ideas in copnection with progresswns How means are inserted

N

Itustration 1. }
Insert three\harmonie means between —§ and %

Solution: One must first insert three arithmetic means
between —2 and 12, Thus we see that we are asked to

Zfotm an anthmetlc progression consisting of 5 terms (the

\ ' "2 given terms and the 3 means), whose first term a = —%
R and last term ! =12 From I =a+ (np— 1d, we

N ) have,
';39' = —'§ + 4d! or
0= —24 124
= 12d°
d=1,

Henee the three arithmetic means are,
_%+1=§1%‘+1 =‘§';‘§"+1 =

The three harmonie means will be: 3, 3, and 2.
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119. Unlimited Geometric Progressions.

The sum of a finite number of terms of a progression is always
a finifc number. In this section we wish to pay special attention
to a geometrie progression when the ratio r is less than 1, and the
number of terms increases indefinitely.
In Sec. 116, we showed that
G = a(_l — ")
r

i where n was finite.

N

) . I - )
'I_‘hls may be written- s = i—r 1—7r e\

Now suppose that ris less than 1. Then 1% is stiil smaller,
r smaller than 12, ete.; and if we take n sufficient] l'arge, we can
make r® indefinitely small. The limit approaeﬁ& by r°, as n
increases without bound, is zero. Hence we define the limit of s,

as n thus increases, to be. 8 , and ijﬁhd that the formula
e &

ar"
1—r1

. . A
becomes 8 = - This is beeguse
NSO K

approaches zero.

N
~

Tliustration 1. . o\ :
Show that the sum of infinitely many terms of the progres-
sion 1 + 5+ § +2 . ., approaches the value 2.

Solution: By the formula above,
N\ a 1 1_

AS .
Thi& ean also be seen geometrically as follows from

. Fig35.
N a ecoordin- l
A" atesystem add L ' — E"é—*
) the amounts I
U of the terms.

- Fig. 35
The first term '

takes us from the origin to the point 1; the sum of the
first two terms is 11; the sum of the first three is 18, ete.
It becomes evident that the amount which is added
each time is half the remaining distance to 2. Henece
by adding infinitely many of these, we shall approach
two as a sum.
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THustration 2.

Show that the repeating decimal 3.272727 . . . is the
decimal result obtained from. a rational fraction and find
the fraction. '

~ Solution: The given number may be writien
3.272727 . . . = 2 4 .27 4+ .0027 + .000027 + . . .
=24 .27[1 4 (01) 4 (012 + ..l

The quantity in brackets is a geometric progr,es@on in
which a =1 and r = .01. The sum of thei\ééries in
brackets is therefore D

5N
100 N\
" \ ).
- Therefore we may now write, /),

3212727 ... =3 +1‘e’_,0’?0\ (1%)

_‘:".:':. .2.Z _ 3 _ ‘3&5
‘.Jj«‘f’“‘*‘gg RS TR T
One can easily, verify the fact that the quotient obtained
when 36 is divided by 11 is the repeating decimal

\’\\" 3279727 . . . .



CuarTEr XVI

" MATHEMATICAL INDUCTION AND
BINOMIAL THEOREM

120. Introduction.

In Chapter XI we considered the topic of deductive reagans
ing, Inthis present chapter we shall consider inductive readoning.
We may define inductive reasoning by saying that it is a\type of
reasoning based upon the examination of special cases@nd drawing
conclusions from the observations. In order that; 'w}\may realize
the full importanes of this method, we shall considér the formula,

n=xt— x4 4L O W
Formuls (1} is historic in mathemat}'cs;"\lt- was given at one
time as a formula for eomputing prime-aumbers n. If one sub-
stitutes a value for x, say x = 1, thenn' = 41. Forx = 2,n = 43.
For x = 3, n = 47, ete. One sy substitute many values for x
and in each case compute a“value of n which will be a prime
number. If one should d{aw the conclusion that every value of
X produces a prime nupber n, the conclusion would be erroneous.
For there is at leagt\o}w value of x for which n is not prime.

If x = 41, n. <M1 — 41 4 41 = 412, which is not s prime
number. We thérefore examine further into this type of reason-
ing by studyifg what we shall term mathematical induction.

121. Mﬁ[ématical Induction.
' .~?P30f by mathematical induction consists of two distinet
Steps.
Step1. The verification of a particular or special case, say
forn = 1.
Step 2. Showing that if the proposition holds for some par-
ticular case, say n = k, it is also true for the next
successive case n = k + 1. . .
Both of these steps are of equal importance in the establish-

ment of the proof.
145
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Step 2 cannot be shown for the illustration which was given '

in Sec. 120.

Perhaps the matter will be clear after an illustration.

]llustratxon 1.

Given n distinet pomts in a plane with no three points on
the same straight line, show that the number of lines neces-

n(n —~ 1

sary to join all pairs of the n points is-given by —

Soluﬁon
Step 1.

" Step 2.

' O\
The problem does not exist if n = X7 The least
number of points which can be conmdered isn =2
One line would be sufficient for ]ommg two points.

This number also safisfies the fnrmula. nfn—1) 3 )
2(22— D _ 1. Thus v@;j}aﬁve eéta,blished the fact

that the formula is ixue in the case n = 2.

We shall now assume that the formula holdz for some
general case = k. 'We wish to show that if it i8
true for 0= k, then it holds also for n = k+ 1.
Suppose”that the k pointg have been joined by pairs,
k(

k(k — 1) lines. If there is a (k + Ljsb

thug‘ umng >

/point, all that is necessary is to join this (k 4~ 1)st
s point to each of the k points, and then all points are

joined by pairs. This would require k additional

_ lines, so that the total number of lines would congist

of the«l‘-g‘-?i) + K lines.
k(k — 1) Kk—1) , 2k
But ——- — 5 —{—k_m—z +2.
_klk—1+42)
2
_kEk+ 1) @)
3

Let us now examine the value which the formula

n(n_2—1_) has when -n = k - 1. Substituting
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k-+Dk+1 -~ _k+1Dk
2 g
which is exactly the number found necessary from
the argument which resulted in equation (2). Hence
the second step has been established.
Conclusion: We have seen that the formula holds for
n = 2 by the first step. The second step says that
it holds for n = 3. Sinece it holds for n = 3, the~
second step says again that if holds for n = 4, et®.
Consequently, we eonclude that it holds for gvery
N

n = k - 1 we have

integral value of n > 2. : .\

N 3
7%
< 3

122. Factorial Notation. K7,
N
Tt is eonvenient to set up & notation for repi"t;}enting special
types of products such ag1-2-3 = 6, ete. _\
The symbol k! (sometimes written klfhl’eans ‘factorial k"
and ig used to indicate the product 1 &»3-4- - - k.

Examples: e
5!is read “factorial 5” and'means 1-2-3-4 -5 = 120.
(» — 1)! means 1-2-@%°- - (n — 1).
0! = 1 {(by definition).’
This factorial notatiof will enter into the discussion of several
of the remaining topied of this outline.
K\..
123. The Binomia} Theorem.
By actugal Iﬁultiplication one may verify each of the following.
(X-j*\ij’»)}=x’+2a.x+a’.
(1§¥“a)3 = x?® -} 3ax® + 3a’x + a

WE )t = xt - dax® + 6akx® + dax + at
O+ a)s = x5 4 Baxt 4 10 + 102% + Ba'x + a°,

\/ This Iast expression may be written in the following form:

. 4.3 5-4-3-2

(x4 a)f = x5 + %ax‘ + ‘-52—'4a2x3 +5 ;1 “ax? =y 8%
5la?
5T

This latter form gives one a clue as to the way m jwhich
(X + 2)® can be written without actually performing the indicated
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multiplication. But before we proceed, let us note cerfain facts
which are apparent from a study of the above cases.

1. The number of terms in the expanded form is (n + 1).

2. The exponent of x in the first term of the expansion is the
same ag the exponent of the binomial.

3. The exponent of x decreases by unity for each successive
term.

4. The first power of a oceurs in the second term, and the
exponent of a increases by unity for each successi{éterm.

5. The coefficients of the terms equidistant from\each end

are equal. \
Now it can be shown* by mathematical 1nduction that for
integral values of n, . “‘\
(x + a)® = x + naxs-! + n(n 1) an 2\+ Iﬁl___:l;]%'(n 2) a3
n(n 1)(n4:1 2)(n— 3) ’x“ fy
n(ﬂ - 1)(11 = 2) e (n—r—+2) gr-lye—rtt
_ ‘f;o r— 1)!
_|.... . _ka'n_
"\
The above exp{ms‘ion is called the binomial theorem.
The term 11:(11 - D@ — (3)_ 0 -1+ 2)ar—lxn—-r+l 8

called t.he,.fh term - Any particular r* term may be written down
from the &bove expression.

A Gther easy way to write any rtt term is to make use of the

following observation. Note any term of the expansion {say the

... (dourth term) and see that in the fourth term every detail goes by

\Jthrees. That is, in the fourth term, the binomial coefficient con-

sists of 3 factors in the numerator, n(n ~ 1)(n — 2); three fac-

torial in the denominator; a has exponent 3; and x has exponent

n — 3. By the same argument, every detail of the seventh term

goes by sixes. Thus, if one wants the seventh term of (x + &%
one can write it immediately as,

* For the cases in which # is negative or a fraction, and for the gener&l
proof of the binomial theovem, see Fine’s College Algebra, p. 663.
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14-13-12-11-10- 8
61

afgles

: or

14-313-12-11-10-9
6!

a%x5,

~ Further observations:

a) H nis even, there are an odd number of terms in the ex-/
pansion, hence a middie term.

by If nis odd, there are an even number of terms, and there
will be two central terms having the same binomial coeﬂiﬁlent

¢) If a is negative, the terms involving odd powers of a will
have a negative coefficient; i.e., the expansion wilb consist of
terms which are alternately <+ and —. N\

Dlustration 1. py \\;
Expand (2y — 3b)4 \
Bolution: Here x = 2y, a = ~3h hence by the binomial
theorem, \
2y — 3b)t = @y)* + 4(— 3b){2y}’ +4 ( 3b)*(2y)* +

432

(e 3h)’(2y) + (—3b)*
= 18y* gsb}' + 216b?yt — 216b% + 81b*.

Mustration 2.
Write the\mlddle term of (x + 3}=
Solutmm "There are 13 terms in the expansion; hence the

de}e ‘term is the seventh term.
12-11- 10987s s —

" }@ut the seventh term is Y
'.\'.
N 12:11-10-9-8-7 12-11-10-9-8-7
A% 61 X = TR g Ee * 2
= 74844x5
Mlustration 3.

Tind the value of (102)%
Solution: This may be written (100 + 2)* =
(100)* + 3-2(100)2 + 3-2)(100) + 2° =
1,000,000 + 60,000 + 1,200 + 8 = 1,061,208,
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Hlustration 4.

Use the binomial theorem to compute the first four terms of
+/1.25 and thereby approximate its value. '

Solution:

V125 = (1 + P2

= v e + AR g+ o

( )( "2_)( g (1)_5m (1)3 ) \“\
bt i \ v
=714 0 125 — 0. 0078125 + 0.0000765725 . \

' 4

N\
AN
>

I

1.1181640725 {approx.).

Four place tables should give the vs.l’f&e} ag 1.1180.

If one computes the next term {JK}he expansion (which is
negative}, one obtains from fiv. t%\rus V125 = 1.11801 +,
and fthe use of additional *i;;;m% does not contribute &
further change in the fourth decimal place.



CrarTER XVII
COMPLEX NUMBERS

124, Introduction.

In Chapter IX, Sec. 66, the imaginary unit i = v =1 has
defined. Complex numbers, that is, numbers of the form &.+ “bi
(where a and b are real), were also defined; and some of the theory
of them was given for convenience in studying the qua.dratlc equa-
tion. The reader should review Sec. 66 at this tlme‘

125. JImaginary and Complex Numbers. \\

A number which is ecmposed of a real\a,nd an imaginary part
such as a - bi is called a complex number. If a is zero, 50 that
the number is of the form bi, we call Such numbers pure imaginary.

It is also useful to note a fewiacts concerning powers of i, as

displayed helow. N\
i = V=1
ife= Pl
Po=i2i=—i

= = (—1(=1) = +1

{ #=1i=i
DT == -1
\\ F=iB=1#=—i

B = is.it = +1, ete.

2\ i we see that successive iritegral powers of i take ona repeating
\Séquence of values —1, —i, +1, 1, ete.
The fact that every power of i which is a multiple of 4 has the
value 1, enables one to make such mmphﬁcatlons as:

123 = (14)5.13 = 13 = —1.

126 Fundamental Operations with Complex Numbers.

Examples of addition, subtraction, multiplication, and divi-
i5¢
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sion will now be illustrated. Each operation will be shown for a
numerical and a general case.*

Hlustration 1.

Addition. :

Add: 2-F4 a -+ bi
-5+ 1 e + di .
3+ & @to +b+Fdi

The sum of two complex numbers is in general a comp]exfmim-
ber whose real part consists of the algebraic sum of the ol parts :
of the two numbers, and whose imaginary part iS the algebraic
sum of the imaginary parts.

-...,‘\"
Tlustration 2. v
Subtraction. N
244 A a + bi
minus —b 4+ 3 ¢+ di .
T+ i K\ “’ {a —¢)+(b— di

The reader should supply the sfatement of a rule similar to that
given for addition.

N <

Illustration 3. "’
Multiplicatl%
2+ 4ix a -+ bi
=3+ % ¢ + di
—% - rz: ac + bei
L4 4 80 - + adi + bdi?
Qﬁ <~ Bi+ 8= {ac — bd) + (ad -+ be)i
\~6- 8 -8 =
AL g : :

O
\ 4 Dlustration 4.
Divigion.
The division of complex numbers involves the process of
rationalization of the denominator discussed in See. 43,

part B. The reader should review that section in connec-
fion with the following examples.

* For the sum and product of conjugate pairs, see Sec. 66.
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244 24+43+21 6+ 16i +8F -2 4 16i

32 3-23+2  9—4 = 13
,___2 Ei
13 " 137
a+bi _a-+bic—di _(ac+ bd) + (be — ad)t _
c+di ed+die—di ez — e
{ae 4 bd) _!_‘(bc—ad):
¢ 4 g2 c“—]—dﬁh

All of these operations may also be performed by writing the
complex numbers in trigonometric form. Since a kno‘,yle ge of
trigonometry has not been assmmned, we shall omit thig treatment
of the complex numbers. Those who are interestedgnll find the
trigonometric forms of complex numbers in must texts on trig-
onometry and in some algebras. \

>
127, Graphical Interpretation of Complei:\N umbers.

The graphical interpretation of fomplex numbers is accom-
plished by using a set of rectangylirazes, such as was done with
the drawing of graphs o
of functions. Some N\
changes are made, The
real numbers are laid off™ .
along the horizontal - »
axis, called the real axis. % 0+ %)

The pure imaginary . . a4 _

values are lajd off along -
the vertidal axis, called ~— -3 -4 -3 -f - TR
the axis‘of imaginaries.
The%nit 1 is used as a _ CoE o3 - %)
~dirgeted distance on the _ -3
véal axis; the unit i is -ail
used ag a directed dis-
tance along the axis of
imaginaries. This is
done as shown in Fig. ' .

36. The plane is called the complex plane, and it is to be noted
that all the real numbers are now delineated by positions ali?ﬂg
the real axis. All pure imaginary numbers lie on the vertical

4
5t

i

Fig. 36

-
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axis. Complex numbers in general are then points of the plane
other than those along the axes.

The figure shows the number 3 4 2i, represented as a point 3
units over and 2 units up from the origin. If this peint is joined
to the origin, the length of this join, represented by p in the figure,
is easily seen to be V32 | 22 = V/13.

In general the distance of any complex number from the -
origin of the complex plane is given by p = V'a? + b? wherothe
number is given as a + hi. This value p = Va2 + b2 i pdlled

- the absolute value of the complex number, and is often (written

p=la+hbil=vVar+b o\

Note that all ecomplex numbers which lie on a{itele of radius p
about the origin will have the same absolute value, even though
the values of a and b are different for each Mimber. '

Another fact to be observed is that‘i}two complex numbers
are- the same, they must represen{\Eh same point. Hence if
a + biand e + diareequal, thena Scandb = 4.

128, Graphical Addition {or. Sﬁﬁtraction) of Complex Numbers.

In Fig. 37, let P (a +'%i) and Q (¢ + di) represent two com-
4 plex numbers. Then

¢ iw’\ R (@ + vi) represents
\ ) w4 Uheir sum. This follows
T8 = f from the sum of two

complex numbers as
given in See. 128, and
the fact that OC = OA
+ OB, and OF = 0D
+ OE.

7,
.:.'/
[ N
\ Y
: \
' i
T

NV : The figure OPRQ
N\ is a parallelogram. The

Tig, 37 distance OR is the

diagonal of this paral-

lelogram drawn from the origin. One of the interpretations of
complex numbers is to consider them ag being represented by
the lines such as OP, OQ, OR. This is called the vector repre-
sentation, and the veetor (such as OP) represents hoth mag-
nitude and direction. Such representation is useful in problems
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of physics which involve forces, velocities, electric current theory,
ete. ' '

The difference of two complex numbers is easily obtained
from the figure if we assume that we wish to find (u 4+ vi) —
{a + bi). This difference is given by (¢ 4 di). It is obtained
graphicslly by adding the negative of a + bi(.e., —a — bi} to the
number & -+ vi.

129. Some Simple Roots of Unity.* R
(A) Cube roots of unity. N
Consider the problem of finding the cube roots of~umty
That is, we wish {o find the numbers whose cube is umty This
can be stated by saying that we wish to solve the et{u&tlon X =1
Write this ag, x*—1=0
Factor (x — I){x*+x4+1) = 0.
The first factor yields the solution, x =& Y
The second factor by the quadratmfa\mula gives
—-1+v— Irf‘ Vo ~8
2 .:?‘ v 2
These are therefore the j;li’i;éé cube roots-of unity. Each of
them has the same abselute value, namely 1. Hence they all .

O\Y {1+ 0.

(==

Fig. 38

lie on & cirele of radius 1. Fig. 38 shows their positions. The
vectors representing these three complex numbers divide the
unit cirele into three equal parts.

e

*In this connection, see Secs. 35, 41, and 136.
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(B) Fourth roots of unity.
These we find by splving *—=1=0.
¥-1=F-DE+1)=—-—DEx+ Dx—Ex+1) =0

The roots arex = 1, —1,1, or
—1 TFig. 39 shows these values
and reveals the fact that the
veetors representing these solutions
divide the unit cirele into fouhequal
parts. ()

(C) Cube roots @f eight.

We soI\.gef}‘.the equation
@ 2®= x— 9
(:iﬂ\-# Zx+ 4y =0

The solutions given by these faétors are x = 2, —1 + V/3i,
—1 ~ /31, We see that they AV
are each just double the cube
roots of unity. Hence théy® (=1 431
each lie on a cirele of ra;éﬁm '
two units and are showh in
Fig. 40. Q
These il s@aﬁons are I
given to show that when one
has solved the-problem of the
cube roots\of unity, one has a
methng\ﬁr finding the cube  (-1-v3j
rootsief any other number.
o - For example, the cube

Fig. 39.

A

~roots of 17 are " Fig. 40
SV Vi, v 17(1-;—\-/@), and vV 17(_““_1;_\/5_1).

In general the cube roots of any number A are equal to the real
cube root of A, multiplied by the three cube roots of nnity.

The generalizations to n™ roots of unity and n* roots of &
number A both involve considerable trigonometry and are usually
not studied in a first course in algebra.,




CuapTEr XVIII
THEORY OF EQUATIONS

130. Introduction.

Many students find it difficult to follow the general proofs
which are usually given in college algebra for theorems,ib. the
theory of equations. For that reason this chapter will e organ-
ized mainly on the basis of humerical cases. Most of\the proofs
for general cases are based on the same gort of argi{miant used in
these special cases. Hence the student should be better enabled
to follow them, Theorems will be stated forythe general case,
however, and the student will find their pro{fs}n every college text.

There are three main reasons fep(Studying the theory of
equations. e

(a) To become familiar with %he theory of the polynomisl,
and to be able to apply it- o8°

(b) To develop the ability to solve for the rational roots of
a polynomial.

{¢) To be able t@'"gpproximate irrational roots of a poly-
nomial. These th¥ee objectives are not distinct, since the last
two of them depend upon theorems learned in item (a).

NS
131. Polyngials,

A '”\omial is an expression of the form _

fXh = amxn + axn? 4 ax®? ...+ 2naX + a,, Where
I is\s positive integer and the a’s are constants with a; # C.
‘THIS expresdon is also called a rational integral function of

egree n. If the above polynomial is equated to zero, we call
the resulting equation a polynomial equation of degree n.

We shall refer to
() = axn axot foaget b oL Faeax o =0 (D)
a8 & polynomial equation of degree n, in first standard form. .

If ay is different from unity we shall find it convenient to divide
both sides of equation (1) by &, obtaining

157
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.'\

= -l P S ] aL—'l ai‘ = (.
x* + aﬂx 42 P e e Y
If we let = = bl, = by, . % = by, we have
a
x4+ blx‘l‘1 + ngﬂ“z 4+ oo Fbaax4+ b, =0, (2)

which we shall call the second standard form of a polynomial of
degree 1. \
In this chapter {(x) = 0 is understood to mean a polymornial

of the first form unless otherwise designated. We shall\donsider

only those cases for which the a’s or b's are real numpers,

~
2%
< D

" Hlustration 1, - )
fx) = 3xt + V5 + x* — 2x — 14 is a:})olynomla.l of de-
gree 4 and the first standard form.

A\
Musteation 2. A7)

fx) =x5+3x — ix? 1+ 6 ié’} ~[')01yn0mial of degree 5,
second standard form w1th Br =0, by =3, by= —1, by
= 0,1 = 6. K\

132, Remainder Theoremi

Consider the polyflomial f(x) = 3x* — 4x® + 6x — 8, and
suppose that thjg,\}{‘al'ynonﬂal is divided by x — 3. We have then
ix) 3x—-4x*46x—8 _ 55

x-——3—.\“'.~- <_3 —3x2+5x+21+x~30r

\" I(x) = (x — 3){3x® + 5x + 21) + 55.
These(&(Gations express the fact that if 3x% — 4x2 4- 6x — 8 is
divided by (x — 3}, the quotient is 3x + 5x + 21 and the re-
whainder is 55.
Let ug now compute f(3) and make a comparison.
f(3) =3-3* — 4.3* + 6-3 — 8 = 55 = Remainder [R].
Thus we have illustrated the Remainder Theorem.
Theorem 1. If a polynomial f(x) is d1v1ded by x — 1, the
remainder 13 f (r)

133. Factor Theorem.

Suppose one finds the value of f(x) = x* — 3> — 6x + 8
when x = 4. That is, one finds f(4). :
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Now f(4) = 4% — 3-42 — 6-4 4 8 = 0, and hence 4 is a root
of f(x) = 0. This means that f(x) is divisible by x — 4 since by
the remainder theorem, f(4) = 0. That is, x* — 3x* ~6x + 8
= (x — 4)(x +- x — 2). Thus we have illustrated the Factor
Theorem.

Theorem 2. I r is & voot of the polynomial f(x) = 0
(meaning that £(r) = 0), then x — r is a factor of {(x).

The converse of the factor theorem is equally true, namely:

Theorem 3. If x — r is a factor of £(x), then r is a root'ef
f(x) = 0. N\

'\
s W

134. Synthetic Division. EN

Rather than perform the actual division, asgwas done in the
previous examples, one finds it comvenient 16 become familiar
with a schematic device for carrying on the division. This scheme
is called synthetic division. One writes,the coefficients of f(x) in
order along a line. If any terms ard(inissing in the given poly-
nomial, one writes zero coefficients fap such terms. The value of
1 is indicated to the right of thigline of coefficients as shown now.

Tiustration 1. oW
We apply this sqheriie‘ to the example used in Sec. 132.
The polynomial(is f(x) = 3x® — 4x? + 6x — 8. The di-

visor (x — (X\Es ’x — 3, so that r is 3. Thus we have the

scheme, >\
3o —4 6 —8 - |3=r
O 9 15 63
O :
\V —
:\.“ 3 5 21 (55 = R)
3 \" These are the coefficients of the quotient.
. Explanation:

Below the line one brings down the leading coefficient 3.
Multiply this by the 3 in the divisor, obtaining 9, and write
this 9 below the second coefficient as shown above. Find
the algebraie sum, which is 5. Multiply this 5 by the di-
visor, 3, obtaining 15. Find the algebraic sum of 6 and 15,
which is 21. Multiply 21 by 3, obtaining 63. The alge-
braic sum of —8 and 63 is 55, which is the remainder, and
also by Theorem 1, this 55 is f(r) = f(3). The other t_hree
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coefficients of the third line, taken in order, are the co-
efficients of the quotient. It must be kept in mind that
this quotient is of degree one less than the degree of the

- given polynomial. Hence the above scheme says that
when 3x3 — 4x? + 6x — 8 is divided by x — 3, the quo-
tient is 3x? 4 5x 4 21 and the remainder is 55. It also
says that {(8) = 55, or that the value of the funetion i s 55
when x = 3.

Nustration 2. p \\\
Determine whether x = 218 a root of S )\

— 100+ 8x+8=0 N
Solution: One must think of this polqumal equation as

being of the form
x4—0x3—10x2+8x+8—0 smce the term in x* is

missing. “\w
By synthetic division, AN
1 0 ~10 A8 8 P2
2 4.8 12 —8
1 2 8y -1 0 =R

Since the remainder is zero, 2 is a root because f(2) = 0,
and x — 2 is a-factor of f(x).

&
135. The Fundan\zental Theorem of Algebra.

The prodPef this theorem is beyond the scope of a first course
in co]iege,&ggebra We state without proof*,
Fheorem 4. Every polynomial f(x) = 0 whose coefficients
\are real or complex numbers has at least one roof, which
,’ " may be real or complex.
m: We shall apply this theorem only to polynomials whose

\ co efﬁclents are resl numbers,

136. Number of Roots of a Polynomial.

The theorem of the preceding section establishes the existence
of a root for every polynomial. Henee, for s given polynomial
f(x} = 0, of degree n, we know that there is at least one root, say
X = ri. Therefore, f(x) may be written,

* For a proof, see Fine's College Algebra, p. 588.
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f(x) = (x — 1) Qu (x),

where Qi (x) is a polynomial of degree n — 1. But again by the
fundamental theorem, Q (x) has a root, say x = r.. Hence

f(x) = (x — r)(x — 1) Qe (X},

where Qu(x) is now of degree n — 2. This argument can be re-
peated only n times. Then we shall have f(x) factored into n,
factors. Hence

Theorem 5. Every polynomial of degree n has exagtipn

roots. NS

Some of the roots may be repeated. Some of the. ,1‘)95’1:5 may

be complex numbers. ‘When we say that there q.rt:a.jn roots, we
count each root separately even though some_of\them are the
same numerically. ' g

N\

Ilustration 1. . . ’\\'
Show all the roots of the po}ﬂl}mial of Hlustration 2,
Bec. 134. W

Solution: We saw that x¢ = 40x2 + 8x + & = 0 had a root
x = 2. Hence, ~~::f;

Xt — 10x2 4 8x + & =ifx — 2)(x* + 2x° — 6x — 4).

The remaining g6t must be obtained from the quotient
x4 2% — 6% ﬁ-—%z Using synthetic division,

\
1\ 2 -6 —4 12
;V\“’“ 9 8 44
N1 4 2 0 = R)

v
z(ﬁa we see that 2 js again a root. Hence,
A%t — 10x2 + Sx + 8 = (x — Dx — D¢ +dx+2).
N\ ) The remaining roots are found from the quadratic (}uotlent
A% x? 4 4x 4+ 2 by methods used in solving quadratic equa-
tions. _ ’
They are, x = —2 +V/2 and x = —2 — /3, a pair of
conjugate quadratic surds. .
We have now found four roots for this fourth degree poly-
nomial. They are, B o _
X=2,x=2,x=—2+‘\/29,nfix=——2-—\_/2- ;
We have illustrated a case for which the root 2 is repeate
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&

and a pair of conjugate surd roots exist. That such roots
enter by pairs is assured by, 3
Theorem 6. If a surd quantity such as a + Vb is a root
of f(x) = 0 with real coefficients, then a —V'b is alsc & root.
If the quadratic factors have complex roots, they also enter
by pairs, as assured by,

Theorem 7. If a | bi is a root of f(x) = 0 with real
coefficients, then the conjugate value a. — bi is also a'toot.

N

137, Relations between Roots and Coefficients, ) \ \)
For use in this and future sections, we shall now éstablish a

polynomial of degree three with roots ry, 1z, and N Sucha poly-

nomial is obtained by multiplying together mt»h& ‘three factors

obtained from the given roots. Thus

(Xx—n)x —r)x—r1,) = 9\\ or
—mtntrx+ e+ +‘xz T —prars = 0. (3)

A general polynormal of degree ghree in second standard form
may be represented as o

x* - b1x5’~+“bzx + by = 0. (4)

Let us require that equatlons {3) and {4) be two representa-~
tions of the same polynqmw,l That is, we shall assume that these
two polynomials ha i{e the same value for every value of x. There
is a theorem which we need in this connection.

Theoreni 8. If two polynomials of degree n are equal in
valug for more than n values of X, the two polynomials are
1@111%1031 (That is, the coefficients of corresponding terms
-,&ré equal.)
N }Ience, equating corresponding coeflicients, we have

by = —(r1+ 1+ rs)
by = '(1‘11‘2 + nry 4+ 1‘21'3)
bs = —1‘11‘21'3.
_‘Whe_n the coefficient of the highest degree term of a poly-
nomial s unity, this example illustrates a theorem which may be
stated as, .
Theorem 9. In a polynomial of second standard form;
by, the coefficient of the second term, = the negative
of the sum'of the roots;
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b, the coefficient of the third term, = the sum of the
product of the roots taken two at a time;

bs, the coefficient of the fourth term, = the negative of
the sum of the product of roots taken three at &
time;

., et

ba, the last term (a constant), = (—1)™ (the product
of all the roots). .

Note: The va,lue of ( 1) will be — f nis odd and + 1£n

is even. A

138, Transformation of an Equation. N

Censider a third degree polynomial as given by’ (3), whose
roots are 1y, Iy, and rz.  Suppose now we form a.noth\er polynomial
of degree three with roots Ry, R, and Ra. Sm:ularly it may be
written, \\

x*—(R; + Ry -+ Ry)x?+ (R1Rs + RiRs+: R:Ba)x — RyRsRa= 0. (5)
Let us further assume that the mot.s of squations (3) and (D)
are related as shown by, Nt
R1 = 2!‘1, Rg = él‘g, R3 = 2]'.‘3,
.., the roots of equa.t,lon (o) are double those of equation (3}.
Under these clrcumstanceg equation (5) can be written

(2!’1 + 21'2 —I" ZRQ}XE -'l'- (21‘1 21’3 + 21'1 21'3 + 21’3 21‘3)}( - (21'1
_.‘. 21'2 21'3) = 0 or
- 2U-'l + 12 +\I’3)X2 -+ 22(1'.'11'2 I T3 -+ I'gl‘g)x — 23(1'1[‘21'3) = 0. (6)

But it will } be'\ﬁoted that the new equation may be obtained from
the glvei\\equatmn (3) by multiplying the second term by 2, the
thlrd terih by 22, the fourth term by 2% This illustrates,
Theorem 10. To obtain a polynomial each of whose roots

\m - is equal to k times the corresponding roots of 2 given poly-
nomial; multiply the successive coefficients beginning with
the second term by k, K&, K% . . ., and the last term by
k2. All missing powers of x must be written ir}to the given
polynormal with zero coefficients. before applying the mul-
tiplieation by k and its powers.

Tlustration 1.

Write an equation whose
xt — 10x2 + 8x +8 = 0.

roots are triple the roots of
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Solution: Write the given equation ag
xt 4 0-% — 10x! + 8x + 8 = 0.
Applying Theorem 10, we have
xt + (3)0x* — (9)10x* + (27)8x + (81)8 =0,  or
x* — 90x% 4 216x + 648 = 0.

Note: We saw in Sec. 136 that the given equation/had
roots 2, 2, =2 + v'2, and ~2 — V2. Therefore thenew

- equation will have roots, (\)

7'\

6,6, ~6-3V2 —6-3V2

To obtain an equation whose roots are the negat:ve ‘of the roots
of a given equation, apply Theorem 10 using k»& -1

Another useful transformation of anéquation is one such

that the new equation has roots which a{re, equal to those of the
given equation each diminished by an\@mount h.

)
&

#

Example: Take the given\ etuation as x¥ — 3x* — 6x
+ 8 = 0, which has rootg\—2, 1, 4. Form a new equation
such that its roots are, ea,eﬁ three less than the roots of the
given equation. Th&’b i, let x, the new values of x which
satisfy the new gqUiation be equal to x — 3. One can ob-
tain the new equation by solving x; = x — 3 for x, obtain-
ing x = % 443, and replacing x in the given equation by
X + 3. A\ )

Thus, &+ 3)* — 3Gy + 2% — 6(x; + 3) + 8 = 0.
Si;&;::ﬁfying aad collecting terms,

\\ x? + 6x + 3%, — 10 =0

is the required equation. Its roots are —5, —2, 1, and
hence are each three less than the roots of the given equs-
tion.

The process as given involves considerable labor, but the
amount of work ean be shortened by using a synthetic
process which is somewhat of an extension of that used in
synthetic division. :

This scheme is ag follows. The first step consists of just

 those steps used heretofore, The second step and each

successive one consists of synthetic division by h applied
to the quotlent obtained at each suceessive stage.
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For example:

1 -3 ~6 '8 3=h

3 0 —18

1 ¢ —6 {—10 = R;) = eonstant term.
3 9 :

1 3 (3 = Ry} = coef. of xu ~
5 {

L)\
1 (6 = Rg) = coef. of X12 \
(1 = coef. of x%) N\ “

The new equation may now be written fyoﬁg((sii’is scheme.
We obtain as before, \;
X+ 6x2 4 3x — 10 = D\

The method is general and can bg applied to any polynomial

of degree n, and one must Izenjgrhber to replace missing

terms by zero coefficients. %%

To increase the roots by aftamount h is equivalent to de-

cressing by an amount —hiand simply means that one di-
vides synthetically by —1{-{

€3

Nustration 2. '\\,;
Write an e,quhion whose roots are equal to the roots of
Xt — 10x¥s*8x + & = 0, each increased by 2.

Soh,Qifghf Using the synthetic scheme:

1 QOYo —10 8 8 -2
o2 A 412 4
,.\‘1":" -9 —6 . 420 (—32 =Ry
Q 2t ~2 +8 ~4
\ 3

1 —4 +2 {(4+16.= Ry}
-2 +12

i ~6 (+14 = Ro)
-9 '

I (-8 = Ra)

{1 = coef. of x¥)
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Henece the new equation is
xt — 8x% + 14x% + 16x — 32 = 0,

and has roots 4, 4, V'2, —V/2, which are each two greater
than the roots of the given equation which were found in
“Bee. 136,

139. Possible Number of Positive and Negative Roots. Q)

We now state a rule which is useful in determining thgqusible
number of positive and negative roots of a polynormal It is
based upon the number of changes of signs among, the ferms of a
polynomial. If two successive terms have dlfferent. signs, one
says that there is a variation of sign. Thus, 32 \—‘ Bx + € has two
variations of sign, from + to — and then back to +.

If x* — 5x 4+ 6 is multiplied by x \\1 one obiains X3 — 6%*
+ 11x — 6, which has three vanatmns\of sign. The factorx — 1
contributes a positive roof. Thiglast polynomial has one more
variation of sign than the pre(;edmg one. Using such an argu-
ment one arrives at a rule, name[y,

Descartes’ rule of signs: The number of positive roots of f(x}) = 0
cannot exceed the number of variations of sign in f(x) = 0. If
the number of positivé'roots is not equal to the number of varia-

‘tions in sign, the%‘the actual number is less by multiples of 2.

(This redugtion is due to the fact that complex roots enter by

~ pairs.) Thesumber of negative roots cannot exceed the number

'.\‘.

m\.J

\OX

of variatigBs of sign in f(—x) = 0. The function f(—x) = 0 can

be fom{éﬁ* by use of Theorem 10 where k = —1. The positive.

mot%of 'f(—x) = 0 are then the nepative roots of f(x) = {,

3

)" Hustration 1.

What information is given by Descartes’ rule concerning
the roots of 2x* 4+ Tx® — 6x2 4+ 8x — 3 = 0?

Solution: By the rule for positive roots there cannot be
more than 3 positive roots, since there are 3 changes of sign.
Therefore, there are either 3 positive roots or 1 positive roob
and two eomplex roots.

f(—x) = 2x* — 7x® — 6x? 4 8x — 3 has only one change
of sign, and hence there is not more than 1 negative root.

Sinee any variation of the number must decrease by twos,
there is one negative root.

i
P
I
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Two other consequences of Descartes’ rule are:
1) If all the signs of & polynomial f(x) are positive, then
f(x) = 0 has no positive roots. (This can also be seen
from another point of view. No positive value sub-
stituted for x can make a sum of terms vanish.)
2) If the signs of f(x) = O are alternately + and —, then
f(x) = 0 has no negative roots. (This follows because _
f(—x) will have all signs the same.)
C O\
140. To Find the Rational Roots of a Polynomial. A\
Tllustration 1. :« ‘
Find the rational roots of \:
9xt b 3x% — Bx% + 8x — 3 = Qs }
Solution: Write this equation in 2fA.$tandard form by
dividing by 2, obtaining, W
Xt 3x% = 8% 4 4x £y'=0. (1)
One may rid equation (1) vqfffi'actions by using Theorem 10
withk = 2. Thus, 0%
(28 ~ (432 + (B)x — (1B) =0 or
& : '
= + ’Q‘ 12x% + 32x — 24 = 0. 2)
Now, equatign (2) has roots which are double the roots of
the givef equation. If we find these roots we can then
Obta.inithe roots of the given equation by taking half of

¢ value found.
' § Theorem 9, the product of the roots of (2) must equal

W8 —24, Hence the only possible values far roots are factors

O of 24, namely 1, £2, +3, 4, 6, &8, +12, £
N One begins by using synthetic division and using the
smallest values first. Using 41, we find
1 3 2. 32 —24 |1
1 4 —8 +24
e
1 4 —8 24 “0=R

so that 1 is a root and the remaining roots are solutions of
the quotient x* + 4xt — 8x + 24 =0
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Using +1, —1, +2, —2, 43, 24, +6 in turn we find that
none of these are roots. Using —6, we have

1 4 -8 24 |—6
—6 +12 —324 =
1 -9 4 0=R

and —6 is a root. The quotient is now quadrétic
x*—2x+4 =0 and can be solved hy formula, 'giving
x=1x2vV_-3. A\

Thus we have not only found -the rational rdots, but we

have in this instance been able to find all of the roots.
They are ~N

1, —6,1 +v'13 and1 — Y23,

S

A\
Therefore, the roots of the origilﬁL}quation are
14+ V-3 V-3
2 A 2

*

1
Ty _37

Compare the types of redfs with the illustration of
Desgcartes’ rule in‘Sé,E',.' 139,

The methods used in this iHustration may be applied to ohtain
all the rational roots.0f & polynomial. We see that the method
can be made to d@éﬁd upon finding only integral roots. Frae-
tional values might have been used as divisors with equation (1),
but this invoh\?ésmore work. If at any time a sufficient number
of rational ¥oots may be found to leave a quadratie quotient, then
all the reots may be found since we have learned to solve the gen-
eral-q@diatic cquation. If the final quotient is of degree 5 or
higliefr, then the problem involves methods of advanced mathe-
matics and does not properly belong to a first course in college

\ algebra. Moreover, the solution of a cubic or quartic polynomial

in general involves methods not given here.
Nlustration 2.
Find the rational roots of
¥ — 5x® + 20x — 16 = 0.

Solution: According to Theorem 9, the roots must be

among the factors of 16, namely among the values +1,
£2, 4, +8, +16.
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141,

Tunetion.
cases.

If one tries synthetic division by I,

1 -5 0 20 —16 |1
1 —4 —4 ~16
1 —4 -4 16 (0 =R)

one finds that x = 1is a root.
Division of the quotient by x = 1 again reveals that 1 LT

not a further root. ' A
Now divide the quotient by 2, R\ \)
1 —4 —4 16 2 >
2 —4 -6 N
' 4 '\:
1 -2 —8 © =R

a;nd x = 2 is found to be a root, s This last quotient

— 2x — 8 factors into (x — 4)( > 2), and from these
factors x=—20r4 The rcaots are aJI rational and are

x=-2,1,24. ,'.“'

NN
v"#

The Graph of a li’cnlyrno::ii"zi:iv '

The graph can be conﬁtructed to represent a given polynomial

This will }ie) iscussed from examples of particular

\\

Ttustration i\

Consr{uct “the graph of the polynomial
O 3 —3xt—6x+8=0

~,j'§5“(;1ution':

Let f(x) = x — 3% — 6x + 8.
Now econstruct a chart of data as shown:

—21 =101

x | -3} -2 )2 1 |
flx) | —24| 0] 10]8]0 8| —10|0
Two methods are at our disposal in finding the values of
{(x) for a given value of x. One is to substitute x = 5, let
us say, and compute f(5) = 5* —3-5* — 6:5 8 = 28.
The other is to use synthetic division and the remainder
theorem to compute f(r). Thus f(5) = Ror
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1 -3 —6 8 |5
5 10 20
1 2 4 28 = R = {(5)

The latter method is mueh shorter in general, especially if
the degree of the polynomial is high. The method has
another advantage. Note in computing (5} above ghat
all the signs of the quotient and remainder are the saine.
If now one should compute f(6), the signs would\rémain
positive, and f(6) would be much larger than £(3). Thus
one sees that after x = 5, the function alwa:",;s inereases.
Furthermore, if we examine f(—3) we haye)

4
1 -3 ~6 8. 23
~3 +18 —385
1 -6 +12 <2 =R = {(-3)

and it appears rather obvipﬁé:ﬂiat f(—4) will also give al-
ternate -+, — signs but $ligt £(—4) will be negative and less

¥ SN : ¥

-—_é:[-_ﬂ-?' TETA R

Fig. 41

Fig. 42 Fig. 43

than £(~3). Hence to the left of x — —3, the function
decreases. - All the roots then lie in the interval —3 to 5.
Using the data of the chart one construets the graph of this
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fanction as shown in Fig. 41. The roots are seen 1o be at
= —2,1,and 4.

The graph of f(x) = x® + 2x% — 4x — 8 (Fig. 42) shows a
polynomial with roots. —2, —2, 2. The fact that —2 is a double
root aceounts for the curve being tangent to the x-axis at the
point (—2, 0).

The graph of f(x) = xi/: 6x + 9 (Fig. 43) shows a polynomial
with roots —3, and 3——ﬂ:2 3 This function has only one raalx
root, and the other two are complex. This accounts for thte fact

£

that the graph crosses the x-axis only once. A
9 '\ ?
142, To Write a Polynomial with Given Roots, “\

Illustration 1.
Tind the polynomial whose toots are¢= ) 1 4.
Solution: The polynomial may, be obtained from either
of two points of view. . W

(A} Since the roots are —-2 1 and 4, the factors are
(x + 2), (x 13, a.nrd (x - 4)
The product of thede three factors gives
ilx) = (x+2)(x—-1)(x—4)—Xs~—3x2—_6x+8.
(BY One may¢ é Theorem 9, as follows:
The nega \\re of the sum of the roots is
b1=."—.( 2+1+4) .
The yim of the prnducts two at a time is
D= (—2.1) + (=24) + (14) = -2 - 8 + 4
0= —6.
AN The product of the roots three at a time is
3% b= —(-2-1-4) =
U Henee we may write the polynomial,
f(x) = x + bix® + bex + bs = x* — 3x* — 6x + 8.

Tlustration 2.
Write a lﬁolynomja.l of lowest degree, with real coefficients,
and having 1, 8, and 1 — i as roots.
Solution: Sinee 1 — 1is a root, by Theorem 7, 1 + i must
also be a root.
Hence the least degree must be four, and the polynomial
must have roots 1, 3, 1 — i, and 1 + i. Therefore,

QY
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() =F-Dx-3Nx—1+dx—1 — 1)
= (xf —4x + 3(x* - A&+ 2)
= x! — 6z% 4 13x* — 14x +} 6.

143. Approximation of Irrational Roots.

It may happen that a polynomial f(x) = 0 has no rational
roots. An example of such a polynomial
is f(x}) = x® — 4x* — x 4 11.“Before
10] demonstrating a method for approximat-
’ ing its roots, let us note the geaph’ of this
function. Below is a chartof*values used
in drawing the graph a,n‘d Fig. 44 shows

2

Y

n

N\

the graph, AN
L ENEIIEY
gt F‘“&'”_tx fixy | —11 ARSI T L] =17

The mget}:mﬂ which we employ for
approximating roots is based upon:

Theprem 11.  If f(x) = 0 has a pos-
tivesyalue for x = a, and a negative
valae' for x = b (or vice versa), then the
. ~graph of f(x) has at least one root between
Fig. 44 _

08 and b,

The interpn t’@tién may be made clear by Fig. 45, which shows
f(a) as positive “and ()
as negativesy W polynomial

¥
has a donfinuous graph, o
and ﬂ{eﬁfare in order to Y= £0d) :’
get,\\{min P, to P; along /“’\

the\ curve, one must cross TS ;
“the axis. At the point of . \
\“erossing there is a root.
The graph could cross more
than once, but certainly .
Fig. 45
must cross at least onee. _
- The approximation is also based upon a graphical interpre-
tation of the method given in Sec. 138 for diminishing the roots -

of an equation. The function used as an illustration in that
section wag

f(x) = x* — 3x* — 6x +- 8 with roots —2, 1, 4.
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The transformed function, whose roots were each three less than

those of the given function, was found to be F(x) =

+ 3x — 10, and had roots —5, —2, 1,

Fix) =

x® + 6x?
Fig. 46 shows the graphs

olFix)=10 O

T

&7 -
ST

Fig. 46

of these two functlo}s where { (}i) is drawn in heavy line, the trans-
formed functlcm F(x) drawn in broken line,

An ex
exactly thelsame.
Each PQ\dt of the graph of
the frhnsformed function

”3ﬁl§gé‘ars three units to the
16ft of the corresponding
point on the glven func-
tion.

The approximation
depends upon a third idea.
If a given function has a
root at a distance h from
the origin as shown by

nmﬁon of the graph shows that the two curves are
They differ only in their relative positions.

¥

Fig. 47

Fig. 47, and this function is transformed into a new one by dimin-
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ishing the roots by an amount h, then the new function will pass
through the origin.
But any funetion such as
) =z 4+ x> + bex®2 4+ . .. 4 ba_x + b,

which passes through the origin must be satisfied by (0, 0).
Hence if {0, 0) be substituted in this funection, we have,

0=0+0+... +ba O
Therefore b, = 0, which means that the mdependen‘t constant,
term of the polynomlal must be zero. N

L W

144. Horner’s Method. (For Positive Roots)

Horner s method is the name applied to th}s means of approxi- -
mating irrational roots. The method
will he expldined in connection with
a pmbleﬁi\ “It consists of successive
transfovmations of & palynomial, where
ea.c];} transformation diminishes the
£oots by a certain amount. Attention

2 :’ is fixed on: one partieular root at a time.

* The transformation itself is accom-

plished as was shown in Sec. 138, using
synthetic division.

4

4

THlustration 1.
Find a positive root of

\’xt’_s X —dxt — x4+ 11 =10,

| Solution: We find by trial that

this polynomial has no rational roots.
‘We construct a chart of values and
Fig. 48 draw the graph as shown in Fig. 48.

x | =21 1] 01112} 3|4} 5]

(o | -1 771 =1 7]38r|
The graph shows that there is one root, between —2 and — 1, one
root between 2 and 3, and one root between 3 and 4. Let us fix
our attention on the root between 2 and 3, and form a new equa-
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tion whose roots are each two less than the roots of the given
equation,

1 —4 -1 +11 2
2 —4 ~10
1 -2 —5 1 = Ry
2 0
1 0 (—5 =Ry
2 A\
. "
1 @ = Ry) L\

(1 = coef, of x%

&
The transformed equation whose roots are twQ Jest than those of
the given equation will be written in terms «0f Xy instead of x in
order to indicate that this is the first transformed equation. From
‘the synthetic scheme we see that this\new equation is
i + 2 — BT =0 o)
Since the given function hadh a oot between two and three,
this new function will now-ligve a root between 0 and 1. We
must now determine the fitw interval in which the root lies.
Finding f(.2) we have
1 2\ -5 1 o2

%4
A

pRY 0.44 —0.912
e 22 —456 10.088 = {(.2)]
E‘i@l\fg"f(.ii) we have
R\ 2 -5 1 0.3
Ay 0.3 0.69 —1.203
N 1 23 “431 [—0.203 = £(3)]

and beeause of the change of sign of the function in passing from

2 to .3 we know by Theorem 11, that its root lies between .2 and
3. . :

Note: Another means of approximating the root would

' be to neglect all terms of equation (1) except the

last two. Since x; is gmall, the terms in X, and x2

would ordinarily eontribute small values, and
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hence an approximate root could be obtained from
solving —6x; 4 1 = 0, yvielding x; =§=.2
(approx.).
If the coefficients of the higher degree terms are
large, the approximation might not be valid, in
which case one would use the first method as shown
for £(.2) and f(.3), ete. "
Our next step is to diminish the roots of equation (1) hy (OE).

Thus, _ .\:\‘
1 2 -5 +1 020
0.2 0.44 —0.912 ~3
1 2.2 —4.56 (+0.088= R,
2 48 o\

1 2.4 (—4.08 = Ry) ™
_ 2 AN

1 (2.6 = Ry) AV

(1 = coef. of x,%) \/

This new transformed equation idwritten in terms of x, to indicate
that it is the second transformed function. It is

X + 2.6x,2.8%4 08x, + 0.088 = 0. (2)

Now a root of this eq ation must lie between 0 and 0.1. Sinee x;

is 50 very small, thé approximate value may be computed from
the last two term.> '

',:{4;083;2 + 0.088 = 0 (approx.)  or

O 0088 _
D * = Zog - 002,

$0 tl\x%a root lies between 0.02 and 0.03.

.“\‘f',""Our next step is to diminish the roots of equation (2) by 0.02.
Thus, ' :
N

1 2.6 —4.08 +0.088  [0.02
.02 0524 — 080552

1 262 40276 (0.007448 = R,)
02 0528

i 264 (39748 = Ry
02

1 (2.66 = Ry)

(1 = coef. of x4
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The new equation is therefore
-+ 2.66x57 — 3.9748%; + 0.007448 = 0. (3)
It must have a root between 0 and 0.01. '

To approximate the next value with which to diminish the
roots we have as before:

—3.9748%; 4 0.007448 = 0 or

0.007448
X3 = Toomig = 0.001+ (approx.). O\

Our next step is then to diminish the roots of (3) by 0.001. {'With-

out performing this step we may assert that the value of thxs root
to three decimal places is

2 4+ 0.2 + 0.02 + 0.001 = 2.22X

since this is the sum of the sueccessive amounts\by which the roots
have been diminished. L&

Note also that the independent, constant term has been

“approaching zero. This process may be'carried on to any desired

degree of approximation.

To determine the other posmve root, which lies between 3
and 4, one begins by diminishing the roots the first timeé by 3 etc.
Its value to two demmals\ts 3.28.

.\

145, Negative Irrat\bhal Roots.

The problem ised in Sec. 144 has a negative toot, and

hence we pro\ deed to approximate it.
We poirted out in Sec. 139 that the negative roots of f(x}

= areibhe positive roots of f(—x) = 0. We use this fact now
and: i:Ol‘l’ltl f(—x) according to the rule given in Theorem 10, with
k N
\ " The given function- is
f(x) = x* - 4x* —x+ 11 =0.
Hence
fox) = ¥ — (=Dt — (— )% + (1911 = 0
=4t -x—11=0 4
Now apply the method of Sec. 144 to fied a pomtwe root of

- equation (4) which lies between 1 and 2.
" Diminishing the roots by 1, we have



178 COLLEGE ALGEBRA

1 4 -1 -1 i
1 5 4

1 5 4 (—7 =Ry
1 6

1 6 (10 = Ry)
i N

A ¢

1 (7 = Ry pr :'\\\

(1 = coef. of x;3) ~ bt
. \ 3

The first transformed equation is \\
%3+ 7x2 4 108 — 7 \Y» ®)

By synthetic division one discovers tha:&here is a root of this new
polynomial between 0.5 and 0.6.

X )

QO

Thus, ' QY
1 7 1(1 \ -7 |05
5 4875 6.875
1 75, N 1376 —0.125 = (.5
m\\
A -1 ps
(S I 4 56 8.736
5 \j 7.6 14.56 1.736 = £(.6)
Heiﬁe"we proeeed to diminish the roots of (5) by 0.5.
”\\z‘u 1 7 10 -7 |05
~O . 5 3.75 6.875
I 15 13.75 (—.125 = Ry)
5 4.00 _
1 85 (17.75 = Ry)

1 (8.5 = Ry)

- (1 = coef. of x5
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The new equation is now

Xzs + 8. 5X22 -+ 17 75}{2 — 0.125 = 0. . (6)

The next approximation, obtained from the last two terms of
equation (6), gives

x, = 0.007.

Henee oné would have a root equal to 1 4- 0.5 + 0.007 = 1.50';\

. ag an approximation at this stage. \\

The negative root to two decimals is therefore the Ilegﬁ?ﬂ;'e

of this value, or —1.507 . { ':,\
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CHarter XIX
PERMUTATIONS, COMBINATIONS, AND PROBABIL\ITY

146. A Fundamental Principle. O\
There are three modes of transportation availale, in making
& certain {rip. These are travelling by airplane, Qai«&cnr train. In
how many ways can a round trip be made if ou®\travels by a dif-
ferent means each way? If we let A represent airplane, C repre-
sent car, and T represent train, we may gnuherate the modes of
transportation for the round trip in thefollowing ways. (The

- first letter represents the means of gofng, the second represents

\
) 3

X

the means of return.) O\
| AG, AT, @, CA, TA, TC.

We conclude that there are' 6 ways of making the round trip. If
the number of casesfo be examined is smsll, one can always
analyze the problemy s we have analyzed it. '
However, there is another means of snalysis which may be
used. The gélhg trip can be made with any one of three means
of transpoxtaiion, but after any one of them has been used, there
remainga ehoice from two others for the return trip. 'With every
choi & i "going there are two choices for the return trip. Hence
th,&'b%;al nuriber of round trips is 3-2 = 6. This illustrates the

a ‘3'. Fundamental Principle, If one thing' can be done in n; ways,
(and if after it has been done in any one of these ways, a second

thing can he done in n; ways, then the two things can be done in
the order stated in ny-n, ways.

This principle may be extended to any number of cases.
Thus, if one thing can be done in » ways, a second in n, ways, @
third in n; ways, etc., then the number of ways in which they can
be done jointly in the order statedisn; mzony . . .

The above principle is basie in all of the problems of this
chapter.

180
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PART 1. PERMUTATIONS

147. Definition and Formulas.

Buppose we have given n different objects. We choose r of
these n objects and arrange the r chosen objects in some spacified
order, Iiach arrangement which can be formed of these r objects
iz called s permutation of the n objects taken r at a time.

We denote the number of these permutations by the symbcul\
P(n, r), which is read, “the number of permutations of n thingg
taken r at a time.'™ O\

Tifustzation 1. O

An automobile dealer is offering cars made i four body
styles, three types of wheels, and in five diﬁ'erent colors.
How many cars are nceessary in order to(display all possi-
ble schemes?

Solution: With any of the four b@@Styles there can be
any of the threc types of w heels,Qafid any of the five differ-
ent colors. Hence, he must iave in stock 4:3-5 = 60
cars in order to exhibit all passible cars.

By similar reasoning we may sl{dﬁ? that

Fo,0) =an— DO -0 —-3) ... o—r+1. @
For, the first choice can H& made in any one of n ways,

the second choice'cdn be made in any one of n — 1 ways,

the third choice‘ean be made in any one of n — 2 ways,

\

\ r”‘ choice can be made in auy one of n — (r — 1) ways.

ence, we arrive at formula (1).

; Ifr—n,“e have
\“" Pn,n) =nfn — H{n —2) ... 2-1 =nt (2)
' (The symbol n! was defined in Sec. 122.)
Another form of the expression (1) can be obtained by
multiplying and dividing the right-hand member by
(o — 1)1, giving

Pm,1 = 5y @)

* Another symbof also used iz nPr.
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148,

I]:lustratioq 2,

In how many ways can six books be arranged on a shelf if
two particular books must always be together?

Solution: Wrap the two particular ‘books -together to
form a single package. Now the problem reduces to find-
ing P(5, 5), because we have four separate books and the
package. But P(5, 5) = 5-4-3.2-1 = 120. For each of
these 120 arrangements the two wrapped books'had the
same relative positions. They could be integc\h&nged in
the package and 120 other arrangements formed. The
total number of arrangements is therefore 2-P(5, 5) =
2(120) = 240.

Tllustration 3, \\
Same as Illustration 2, except that the two particular
books must never be together, /; N _

Solution: The two books~are either together or sepa-
rated. The total numbeb\6f ways in  which six books
could be arranged is P(8,6) = 720. We have seen above
thatin 240 cases the $w0 particular books could be together,
Hence, 720 — 240.5"480 = the number of arrangements
in which the two partieular books will be separated.

RA . .
Permutatiégs of N Things Not All Distinct.
Iinstration 1.
Find“the number of distinet permutations of the seven
_ degters of the word “success.”

% " Solution: Let P be the number of distinet permutations

of the letters of the word “success.” But since the two
¢’s are alike, their interchange would not lead to a new per-
mutation. Likewise the three s’s would not lead to new
permutations. In order to be able to distinguish repeat-
ed letters let us write s; u Cz C2 & S 83, using subscripts to aid
in identification, .

Because of the two ¢'s and the three s’s the number of
permutations of the seven letters may be written

. 71
21,81 = =t
P-21.31 = 7i or P= 3131
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In a similar way we may show that the number of distinet
permutations of n things taken n at a time, where n; are
_alike, ny are alike, etc., is

_ nl
a nllnzlﬂs! e (4)

149, Circular Permutations.

N

Tustration 1. )
In how many orders can six people be a.rranged amund a
circular table? N

Solution: In order to have a starting p 'nif Yone of the
six people must be seated at some spot. Thed the next seat
can be filled in any one of five ways, the\next in any one of
four, ete. Hence the number of arrafgements is 5-4-3-2-1
= 5! = 120. o)

This illustrates the argument by whlch we may show that
the number of permutations for o, thmgs arranged in the form of
a eirele is given by AN

Pl — a1 = (- 1! ®)

PART 2. COMBINATIONS

150. Deﬁnip{ail\and Formulas.

If, fr¢m Smong n things, r of them are selected without regard
to theo er of arrangement, then any such selection is called a
combination of the n things taken r at a time.

2\ JThe symbol used is C(n, r} and is read, ‘‘the number of com-
\bmatlons of n things taken r at a time.”

One should note the distinction between permutations and
combinations. The former deals with a definite order for the r
chosen things; the latter disregards order or arrangement. The
student should exercise care in deciding whether a certain problem
is one of permutation or of combination. The qguestion of type
is ealy settled if one decides whether order of arrangement is

essential.
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HNustration 1.,
Write the combinations of a, b, ¢, d, taken two at a Lime.
Solution: They may be written ag ab, ac, ad, be, bd, ed,
and are gix in number,
Now, ab and ba belong to the same combination, since they in-
voive the same elements. In fact each of the combinations given
above yields two permutations. A~
The number of permutations of four things two at a ‘time is
P4, 2) = 4.3 = 12. Hence, if one multiplies the giutsber of
combinations of four things taken two at a time by th8 hurmber of -
permutations in each combination, the result ig~the number of
permutations of four things taken two at a tim§~.. That is,
C4, 2)-P(2, 2) = P(4 2)‘.2\
We use this sort of argument for the general case.
Denote the number of combinationg of n things r at a time by
C(n, r). Now these r things in #\given combination can be ar-
ranged among themselves in rl permutations. Hence,

r!- Cln, 'I)':l':.P(n, r) or
O = 20D, (®)
RA r
" Replacing %@,&) by its value from equation (1) we have
CpMo=Do -8 ...0-r-1n

If wg..(ébl;tce P(n, r) by its value from equation (3), we obtain
ano{ﬁer’ form,

N —__unt i
m\ Cla, 1) = rl {n — r)! ®
N/ Usually, we shall use equation (7) in preference to equation

(8), since fewer terms need to be written.

Tlustration 2.
Find n if P(n, 3) = 3Cin, 4.
Solution: This may be written
_3n(n—-Dn-—2n -3

n(n——l)(n—2) 2.5
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and both sides may be divided by n(n — L{n — 2), giving

_ 30 ~3)
1= 21 or
n—3
1= R . or
8=n-—3orn =11 A
The student may check the solution by writing N o
. o\

P(11, 3) = 3C(11, 4) ~

and evaluating both sides of the equation. :""'

N

151. Total Number of Combinations of N Thmgs\

et us now write a few particular combinations.

. N
Ca,p=7=1 "
Cm, 2) = 22—
Cn, 3) = g(n_—%)'(n——Z_l

O am— 1)n — 2@ —3)
Cln % = -4l

ete. _
Comp@cri}né these values with the binomial coefficients in the
binomial/#heorem, Sec. 123, we see that the binomial theorem
for mtgg\ral values of n may be written

G ) = x» -+ C(n, Dax=~* + Oln, x> + ..
o) 4 C,r - Damx L+ Coyman. (9)

\"\‘ ﬁow let x = 1 and a = 1 in equation (9} and
(14 =1+ Cn, D+Chn 2+ ...+ Conr— Lt

... +Cr,n)
or
2n_1=C(n,1)+0(n,2)+...+C(n,1’—1)+...
+ Cn, ). (10)

Stated in words, equation 10 says that the total numi?er of com-
binations of n things taken 1, 2, 3 ...,nstatime:s 2a — 1,
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Tiustration 1,

How many differen sums may be composed of one each
of the following: cent, nickel, dime, quarter, half-dollar,
and dollar.

Solution: Since we wish to know the total number of
combinations 1 at a time, 2 at a time, etc., up to 6.at a time,
we have by equation (10),2° — 1 = 63. Hence 63 different
sums may be composed using combinations of these six cdits.
Another useful relationship among the numbers of Bom-

binations is given by O

Cl, 1) = Cln,n ~ 1), O (11)

This can be seen o be true from several.p?j)i'}lts of view.
In the first place, if we replace r by &N in equation (8)
we have AN
{1 &/
Clo,n — 1) = B

| B
But this is only a rearra.ngg:heﬁt of the equation (8); hence
Cln, 1) =€, » — 1).

Secondly, if one reoalls that the hinomial coefficients
equidistant from{@ach end are the same, the result follows
at once, \‘ ) _

Again, one ma} reason that any choice of a particular com-
bination of r thing! from n, is merely a disearding of n — r of the
n things. Thus; if one makes a choice of two of the five things,
a, b, ¢, d‘\e}"

N to choose a, b means to diseard ¢, d, e;
\ to choose a, ¢ means to diseard b, d, e;
N ete.,,

»
&
al

80 that the number of choices is equal to the number of discards.
Hence, the conclusion expressed in equation (11).
The utility of equation (11) is shown hy the following.
Dilustration 2, . .
Compute C(15, 11).
Solution: Since C(15, 11) = C(15, 4), we would com-

' 15-14.13-
pute C{15,4) = —1—2—3—3‘—;—2= 1365, rather than
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_ 15:14:13-12-11-10-9-8-7-6-5 _
CA5, 1) = 1534567801011~ 1200

Nlustration 3.
In how many ways can & committee consisting of a chair-
man and three other members be chosen from a group of 8
men? '

Solution : Suppose we choose the chairman first. He cany
be any one of the 8 men; hence there are 8 choices. The
three other members can then be chosen from the7 remamm‘g
men. The number of choices is C(7, 8) ='—i% = 3{: The
number of committees is therefore 8-35 = 280- )

There i3 a second way-of solving this pm\blem A com-

_ 8.7-6:5
mittee of 4 can be chosen from 8 in G{S 4) =1{984"

70 ways. In any one committes t,héte are four choices for
chairman. Hence when one indiedtes the chairman, there
will be 4-70 = 280 commitiees
PART 3.3 PROBABILITY
1562. Definition. \
A jar contains l{hck balls and 7 white balls. If we draw a
ball at random from the jar, the drawing constitutes an event.
The events spith which we shall be concerned are agsumed to
be equally hkel’y\, that is, we assume that there are no influences

which wouldx:ld to force certain events.
I wvent can happen in h different ways and fail in £ differ-

ent ways, and if all of these h 4 f ways are equa.lly likely to oceur,
\t?e\en the probability of its happening is p = T + s and the proba-

bility of its failing is g = h_if.

Htustration 1.
" [ two balls are drawn from the jar, mentioned above,
what ig the probability that they will both be white?
Solution: There are C(10, 2) = 45 ways in which two
balls can be drawn from the 10. Hence h 4+ { = 45. Two
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white balls can be chosen from seven white ones in C{7, 2)
= 21 = h ways. Therefore the probability that both are
o 21 7
white is p = %=1 _
If p is the probability that an event will happen and q is
the probability that it will fail, then

p+qg=1 (12)
h f _h4f_ e
Forh+f+h+f_—h+f_'1‘ R )

If an event is certain to happen, then p= 1,,‘3‘;1\61 q =10
We sometimes speak of the odds in favor, of Yo against) a

certain event. We say that the odds are RAO\ in favor of an
event or q to p against the event. ’

Tlustration 2, { \\:
What are the odds against throwing a 6 with & single throw
of a die? O :

Selution: There are 6 fdces, and only one has the value

of 6. The probability«f throwing any other than a 6 is &.

The probability of ‘a,:’fi’ is 3. Hence the odds are 5 to L

against throwingg 6.

153. ‘Independent gi};lts.

If the occuprente of one event does not affect the probability:

of the occurrenge’of another event, the two are said to be inde-
pendent, ¢

Ilnsfration 1.

N\A'box contains 3 oranges and 4 apples. A sack econtains 6
A8 oranges and 3 apples. One object each is drawn from the
~ D box and sack. What is the probability that both are
\/ oranges? '

Solution: The probability of drawing from the box does
not affeet the probability of drawing from the sack, so that
these are independent events.

The probability p, of drawing an orange from the hox is 3.
The probability p,, of drawing an orange from the sack is

2

¢=2 The probability that both are oranges is
P=pipr=43%=2z
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By » similar argument for two independent events in which
the probability of the first is p: and that of the second is ps,
we may prove

Theorem 1. The probability that both of two inde-
pendent events will oceur at a given trial is the product of
their separate probabilities.
This can be extended to any number of independent events,\

154. Dependent Events. Ko\

'S

N
\¥
\: :

I the occurrence of one event affects the probabilit§ of the

oceurrence of a second event, the two events are said g be, depend-
ent. e \ ¢

Titustration 1. ,“}\
A bag contains three apples, two oranges, and five peaches.
Three objects are drawn from it ji>gdecession. What is
the probability that they will be-an apple, an orange, and
a peach in order? O
Solution: There are 10 gbjects in the bag. The proba-
bility of drawing an applevin one try is £ Buppose that
an apple is drawn. ‘.’he' bag now contains nine objects,
and the probabilitfof drawing an orange on the next trial
is 2. Suppose an'erange is drawn. - Then the bag contains
eight object& \The probability of drawing a peach on the
next. trialdis 5. Therefore the probability of drawing in
order,.‘a.ii'é,pple, then an orange, then a peach is by the
fungameéntal principle
\\"\ _ p=ppp=di=
\By generalizing this argument we may arrive at
Theorem 2. For dependent events, suppose the proba-
bility of a first event is p1, and that after the occurrence of
this event the probability of a second event is ps, and that
after the second event has occurred the probability of a
third event s ps, etc.; then the probability that all these
events will oceur in the prescribed orderisp = P P2 Pa- -

166, Mutually Exclusive Events.

ocourrence of one of them exclu

Two or more events are said to be mutually exclusive if the
des the occurrence of the others.
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Let us consider the case of two events, E; and E,. Let e; and
s be the respective number of ways in which E; and E, can oecur,
The total number of ways (both favorable and unfavorable) will
be represented by t. Then the probability that the event E,

ocours is % The probability that E; oceurs is %2 - Since the events

are exclusive, then the e.l ways are all distinet from the e, WAYS.

Therefore, e; 4 €, is the number of ways in which either T, 8t°E,

can oceur.  The probability p that one or the other of Epr K,
'\

will occur is _ .\
e1+e e e N
p="— ?_=--1+—g=p1+Pz-~.,
t t % K7,
"‘\
Theorem 3. If k mutually exclugive’ events have the
separate probabilities py, p., . . NPy, then the proba-

bility that some one of the k evehis oceur in a given trial
is the sum of their probabilitigd, )
P=m-4 png“-"- « + P
Tlustration 1. ,'.f :3 '
In a tennis tournamétt, the probability that A wins is }
and that B winsd\2. Find the probability that either A
or Bwins. ¢\
Solution:*By the theorem, the probability that either
AorB.Winsisp=%+1§—=§%. '
A</
1566, Repedted Trials. _
 LN\NY
W,&ho'ut proof*, we state two theorers.
Theorem 4. If the probability that an event will aceur
~\.J on asingle trial is p, the probability that it will oceur ex-
\/ actly r times among n trials is
C(n, 1} pr-q™r, where q=1~p,
Theorem 5. The probability that an event will oecur at
least r times among 1 trials is given by

p* + Cln, Hpoiq + C(n, 2)p=—2r. . . . + Clo, n — r)prq>—

* For proofs, see Fina's College Algebra; p, 420,
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Tilustration 1.
What is the probability that an ace will ocour exactly three
times in five throws of a single die? '
Solution: By Theorem 4, . :
1 25 125

- 133, (52 = 10 o o o,
Ilfustration 2. Q)
What is the probability that an ace will occur at least firee
times in five throws of a single die? ™
Solution: By Theorem 5, \

b= (1) +C 6,0 B ® +C 52 W@

.

= (B + 5@ + 10 B @ =suap

157. Mathematical Expectation. o\

If & person is to receive a sum of nif&iiey M based upon the
occurrence of an event whose probabii'{ty of happening is p, then
the value of his expectation E is Ex=M-p.

In many instances the valug of the probability p cannot be
determined by analysis intovlegically existent cases, as we have
done thus far. This is pastictilarly true in applications to life and
fire insurance, business forecasting, and ‘the like. In these cases
the value to be usegkfér ‘the probability p must be arrived at from
statistical studie$¥

For such, purposes we define the following terms. If an event
happens h ifnee in 1 trials as shown by a statistical study, then h
is called thé frequency of occurrence of the event. The relative

frequéiicy of its occurrence is designated as g. If from a study
mqf\'a'.:ﬁ' indefinitely large number of cases, the relative frequency
\ approaches a limit, this limit is called the statistical or empirical

probability. This limit approached by ll—; is taken as the value

of p. .
filustration 1.
A man is to receive $10 if he throws an ace with a single
throw of a die. What is the value of his expectation?

* Bae College Outline Series—An Outline of Statistical Methods, by Arkin
and Colton. 3rd ed. Barnes & Noble, New York.
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Solution: By definition, and since the probability of
throwing an ace is 3, E = $10-1 = $12.
Hlustration 2.
A man wishes to insurc a house for 86000, The insurance
company knows from statistical studies that in the particu-
Iar location 42 out of every 10,000 houses are destroyed
annually by fire. Disregarding overhead and otherfgctors,
what premium should the man be charged for mxm(mg his
houge?

Selution: This is solved on the pnnmple of Eithematlcaﬂ
expectation. If the company insures 10 00{) OT ThOre
houses, it can afford to charge a premium based on the prod-
uct of the insured amount and the probability of fire, The

probability of fire is —— The!éf:ore the premiwm would

10000
42
amount to 36000 - 10000 = $25'20 if other normal factors
are disregarded. N\

Many problems of th)s last type arise in business. A dis-
cussion of them can be found in any text on the mathematics of
finance and busmess\\ '



CHAPTER XX
DETERM_INANTS

168. Introduction. OV

In Chapter VIIT we learned how to solve systems of‘:l'ineé,r
equations. In the present chapter, we now genera,lizz\:‘f;}}e ideas
which so far have been applied to cases in which the\Ceefficients

have been definite numerical values. .w,'\\'
Thus we begin by finding a solution for a pair’ of linear equa-
tions! PN
ax + by = ¢ ™ (1)
89X + by = OV (2)

Using the ‘method of Sec. 59: quﬂﬁipiﬁng equation (1) by b:
and equation (2) by by and subtracting, we have:
(aib2 —"aﬂ;})ﬁ = ¢be — by 3)

In similar fashion, multiplying equation (1) by as and equation (2)
by a; and subtractin, ,Q‘xe’ have

Agabs — b))y = 816 — 8201 {4)
By assuming t;}%t.:albg — agh is different from zero, we may solve
equations (3Pand (4) for x and y respectively, obtaining:

'® M

.\"" cibe — by
= ——1 5
.‘\ \ x mby — aabl’ ®)

o a1tz — 8201

. \%; = =2t P
\ ) aihy — azh (6)

169, Notation of Determinants.

Equations (5) and (8) invelve certain typical expressions of
which abs — a4by is an example. A eonvenient notation, known
as 2 determinant, may be used to represent this algebraic expres-

sion.

Definition 1: The symbol A by

a; by
193

is called a determinant of
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the second order, and is an identical representation for sib, —
Baby.

The four quant.ltles involved are ca.lled the elements of the
determinant. :

Definition 2: A determinant is a square axray of n? elemerits,
arranged in n rows and n columns, the expansion of which repre-
sents an algebraic expression of n! terms, homogeneous in the,ele-
ments of the determinant.

"The rules for expanding s determinant are gwen Iaisel\m this
chapter.

A determinant of the third order, and the alggbralc expression
which it represents, are as follows:

M\‘
a, b1 T ) \J
82 by €| = aybwes — aubse; 4 byesag — le{ﬂa + €1azbs — ciaighs 7
g by 3 AN

160. Minors and Cofactors. \ O

Every element of a determmant has a miner, which is itself a
determinant of the next lowEr order. This minor in determined
according to the foﬂomng '

Rule: m\

To fin bhe minor of any particular element, strike out
the row and column in which the element lies. The portion
of the déterminant which then remains (the elements written

in tl\elr same relative pOSlthIlS) constitutes the minor.
\mustratmn i
R\ § Consider the determ_inant in equation (7) of the last sestion.

S
%
\:

The minor of a; will be desig-

bzcz_.
baCa

. . |bae
The minor of @y is |, 2 |
bs Ca

nated by the symbol A;. 8o that A; =

Hlustration 2.

The minor of the element b, is
a1 ¢
8z C2
The cofactor of any element is defined as the minor of the ele-

= Ba.
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ment to which there has been prefixed & 4 or — sign, according to
the ’
Rule:

The sign affixed is + if the sum of the row aad eolumn
in which the element lies is even; the sign is — if the sum ot
the row and column in which the element lies is odd. Thus
we multiply the minor by (—1) Ue @ power equal fo & sum).
This is - if the power of —1 is even, and — if the power.iy
odd.

O\
Tlustration 3. - e\
The cofactor of the element 2 in the determinanty N
11 38lis(-17]-13] O
2 0—-35 43 O
1 4 3 \

If one evaluates the cofactor, the'\i'ésult iz 15, because
{—1)* = ~—1and the minor has thewalue (— nE -8B @
= —15. The produet of ($1) ‘and (—15) gives -+15.

161. The Expansion of a Déterminant.

In See. 159, equation 7, a third order determinant was
given with the algebraic expression which it represents. By
means of the notiqn%) cofactors, we are now in a position to show
how the right-hand member may be obtained from the deter-
minant, O\

Thisx}}ﬁmoeed to formulate as follows:
Colnie'{’ider the elements in the first row of the determinant.
a, igin, the first row, first column, go that the cofactor is -+A.

‘brisin the first row, second colurnn, so that the cofactor is —Bi.
<‘g1“is in the first row, third colump, so that the cofactor 18 4Cs.

a; b], [441
By definition then | a. by cz| = maA; — By -+ ol =
- ag by e
baca| _ 4 [B2€ e bzl _
% bs 03' b1 &; Cs to ay by

a1 (bats — bscz) — br {8503 — BaCz) + €1 (82bs — ashs).
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This last step reduces immediately to the right-hand member
a8 given irn (7).

Any row or eolumn could have been used to obtain the right-
hand member of (7).

Using the 2nd row, one would have,

— 8345 - bB: — ;Cy. 8
. Using the 3rd column, one would have, N\
e1C; — Gy + ¢5Cs. O\ @

The reader should verify by actual computation that expres-
sions (8) and (9) above give identieally the right-hahd member of
(7). Any determinant may be expanded in terms of ‘the elements
and- eorresponding cofactors of any row or colimn.

This expansion in terms of minors ig\g general method. It
2 by
_ ) | 22 by
For we may think of b, as Ay, sincannthis case the minor of a, con-
sists of a single element, so that ‘the expansion a4, — apds be-
comes aby — agh,. Likewisg{féi‘ determinants of higher order: -

TN

applies also to a determinant of the se{@'order such as

a3 b1 ] dl R Y
by e d
Thus ::b: ::j d: = a{AI — 824; + azA; — a.A,

)

By b.;' e; dy N

Each minor AMs of third order, and itself consists of six terms.
But, there aré4'such A’s, and therefore the expansion of a fourth
order dete{'minant consists of 4(6) = 24 or 4! terms. By extend-
ing thigsért of argument a determinant of order n is seen to repre-
Bent‘otk Terma.

i 162. Application of Determinants,

Returning now to equations (5) and (6) we see that in
terms of second order determinants we may write an equivalent
form for them. Therefore the simultaneous solution of the pair
of equations

ax + by = ¢
azx + by = ¢
can be written as
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&1 bl 1t
_lcabe fig Cs
X = b N y = .
&b by
ﬂ@bﬂ an bz

. ‘The determinant notation gives one a systematic scheme for
writing, as well as evaluating, the solution. Note carefully the
pattern which is shown by the determinant solution.

Starting with three equations in three unknowns such as « { >
ax + bly + gz = d; "\:fl)
agx + by + 0oz = de O @
ax + byy + 652 = ds 4‘:3;, (3)

and applying the method used in Sec. 62 for;si\'ring such a
system of equations, one finally arrives at a valuefor x.
% = dibecs — dibscs + debses — dzbwq A dsbyer ~ dybee:
mbscs — aibac: + ashae: — ﬂabzﬁ‘q"f: ashic; — asbact
Similarly, expressions for y and z may be obtained. But all these
cant be expressed in terms of third order determinants, thus,

dib e :ﬁf di & a1 by d:
dz b ¢y ”":&zdzcﬂ 4 be ds

_ di b; ¢z AN a; ds 03 -y = %bads'
abiaf O Same Same
ag by e} NN as for as for
a3 bs &) X X

We see thenit:h\at for systems of 2 or 3 equations the solution may
be set up. by determinants. Note, that when the equations are
arrangéd™so that the unknowns have the same order for each
equzit}on of the system:
..(\'a} the determinant in the denominator consists of the array
\ of coefficients of the variables,

b) The determinant in the numerator always has the inde-
pendent constant terms replacing the corresponding coefficients
of the variables which are in the denominator. That is, if the
variables are arranged in the order x, y, z, then when we are

“solving for x, the d’s occur in the first column in the numerator;
when we are solving for y, the d’s are in the second column; and
when we are solving for z, the d’s are in the third column.
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Tilustration 1,
Find the simultaneous solution for the equations
X —4dy=7
x + 6y = 6.
7 —4
. Js 6 |42~ (-20) 66 _,
‘3 AT B-(-y 72T
1 6 %
3 7 R\,
‘1 6] _18-7_ un_, O
R ) ‘?2‘*3”&
Hlustration 2, 40
Solve the system x4+ y 4+ 2z = 2 "\
o 2ZX— y—z=1 \
x—f-?y—zr—;:',*\&
L2o1 &

11 -1 2’-1 ~1J;;1‘1 1 -(-3)! 11
_x=!~3 2 -1 |2 i 2 -1 -1 =1 _
| 1 1 71 ~lex Y =217 1] F1] 1 1
P2 -1 w1‘ ]3'2,"—_1 12 -1 ‘ﬂl —1'

|1 2-1 Al
21 + 2) — ST-2) + 3(—141) _9_,
11 +2) S£2(-1-2) + i(¥i+1) "¢~ L

{Both ,déberminants have been expanded in tertns of
elempnts of the first column, |
The solutions for y and z are set up and have values a8

follows:
e 1 1 2
SN2 — 1 2 -1 .1
e N . _
\J 1 —3 —1! - —
\_\y_—_;.-——_g___h=_.9.§=._.l, z=1 92 3=1§8x2'

The above methods are applicable also to aly system con-
‘sisting of o equations in n unknowns. :

163. Properties of Determinants,

] Fo‘r couvenience we shall designate s typieal third order
detérminant by D. The properties of determinants as stated

»*
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below hold for any determinant of order n. However, general
proof will not be given, but the reader will be shown how to verify
the theorems for third order determinants.

a1 by e
Let D = laa by el Then,
a; bz e;
Theorem 1. I rows are made into columns in the sdxie"
orders, the value of & determirant is unchanged. O\
abyo a1 8 % O
That is, 25 be ¢o] = |b1 b: by, and the
a3 bs ¢ ¢ 2 G ,\Q _
_reader should verify this by actusly.expanding both
determinants.

This theorem gives one the righty to\substltute the word
column for row in any theorem on detetrainants.

Theorem 2. I two columns (orurows) of a determinant are
the same, the value of the determmant is zero.

™ a bl C1
The reader should evaluate a8y by o] to see this fact.
K g by 5} -

O
Theorem 3., Any factor k may be removed from all the
elements of a coln (or row), if the residual determinant is mul-

tiplied by the ’jsra;lile k.

D kb e a1 by &
Th\\é.th, ks byo:| =k [mbecsl,
ka; bs ¢ asbs ey

..\’.

L) s the reader may verify by actually expanding both de-
\/  terminants. )

Theorem 4. If all the elements of a column (or row) of a
determinant are multiplied by the same number k, the value of
the determinant is multiplied by k.

(This theorem follows from the demonstratlon suggested in

Theorem 3.)
Theorem B. The value of & determinant is unchanged if

each element of any column (or row) is multiplied by & value m
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and added to or subtracted from the corresponding elements of -
another column (or row).

To see this, let the reader verify the following

{1 + mb;)) b e a b: ¢ b: b o & by e
(8 +mby) b ¢ = |a; by e + mibz bs 2 = |as b 0y,
(as +mbs) by ol [as bs [bs bs s |8 bs €5

Note that the determinant (above) which is multiplied bj} m,

has the value zero because of Theorem 2. L\

The verification for subtracting will involve “writing
(a1 — mhy), ete., and is quite similar. \+

"
S )

164. Application of the Theorems, | o
Hlustration 1. ' \\:
2 5 1 &
Evaluate 3 4 1|
6 1 1 .
Using Theorem 5, add ”éblumn_s 1 and 2 to form a new
determinant, LN
N 75 1
. namely, 7 4 1|
z“’g 711

Now diyj(kthe first column by 7, by Theorem 3, obtaining
@5 1
w1 41
o 11

N
by"marem 2, this last determinant has the value zero, since the
18tand 3rd columns are alike, Hence the value of the given de-
~\ferminant is zero.

; Which is equal to 7(0) because

NMustration 2.
2 -3 1
fvaluate -1 2 1|
3 1 2

Write a new determinant from the given one by the follow-

ing steps, each of which will mot change the value of the
determinant, :
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Thus

e

/N
%
\ }

b

Copy first row as given.
2. Torm a new 2nd row by subtracting row 1 from row 2.
(Theorem 5) '

3. Form a new 3rd row by multiplying row 1 by —2 and

addtorow 3. (Theorem 5)

2 -3 1
=3 5 0
-1 70 N\

{
Expand this new determinant in terms of the elements 6f
the 3rd column. ALY

2 -3 1 .

-3 5 0
-1 70

3 RN
3 5! = 3 —5(-YB -2 +5~ -16

Thus we obtain

=] ::;’ ? —{. | minor -?\0 minor

-1 7

This illustration shows a third drder determinant repre-
sented by an equivalent second order determinant. This
representation was broughtsabout by using the theorems
to insert zeros convenjently so that when an expansion
was made in terms,¢hthe elements of some row or column,
all except one of ~the minors would be multiplied by zero.
By utilizing this idea any determinant of order n can be
represented by an equivalent 2nd order determinant.
Practice,dnd considerable insight are somewhat essential in

such p(acbdure.

2 0
g —1
Evaluate 1 —1

0 3

it tfaﬁ:o'n 3,
. s“i &

- 03 B OO
= G

2

. Without using any of the theorems, this determinant can

be expanded quite conveniently in terms of the elements of
the first column, since this column contains two zeros

which will simplify the expansion.

-1 2 1 0 3 3
ThuBW]'fWOlﬂd 2-1 3 1|+1{-1 2 1|=-16
ave, 3 1 2 3 1 2
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The reader should verify this result by actual expansion,
A second approach would be to ecopy the last three rows as
given. Form a new first row by multiplying the 3rd row
by —2 and adding to row 1. Thus we obtain,

0 2 -3 1

0 -1 2 1

1 -1 38 1} O
0 3 1 2

N
28N

Expanding now in terms of elemenis of the firgt column,

.

the only minor left is

N
7

2 -3 1 But this is just the Giginal determi-
11 -1 2 1 nant given in Hu@Stration 2, and has
3 1 2

the value 16,
:'\\'
185. Linear Systems of Homogeneous Equations.
Definition: If all the terms a.re of the same degree in the un-.
knowns, an equation is said to be&homogeneous.
Consider the homogenepis system,
ax P by + ez = 0
R + by + ez =20
¢ ¢\ BeX 1 by + ¢gz = 0,
These are rather obviously all satisfied by the solution x = 0,
¥y=0z= Q{" ealled the trivial solution. If there is any other

solution ﬂ\en some minor, say l ::gl ,» must not vanish when
& 2
ar brieyd
ag:ba)\ﬁe = 0.

\ ‘:I'n. this case, then, the first two equations may be solved for x and
¥ In terms of z, giving '

—cz Iy ‘ 8 —0z
—CaZ bz ! Ba — (o2
B by y= a1 by

a2 by 85 by

.If thf:n a solution other than the trivial one exists, there will be an
infinite number of solutions, Sinee x and y are each expressed in
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terms of z, then when any value different from zero is assigned to z,
a pair of values of x and y are determined. .

166. Systems in N Equations in (N-1) Unknowns,

Theorem. A necessary condition that n equations in n-1
unknowns have a solution is that the eliminant of the system
vanigh. )

Definition; The determinant which consists of the array of
coefficients and the eonstant terms is called the eliminant of tlte
system. ' O\

We shall not prove this theorem for the case of n efjuations,
but we shall illustrate the general case by a proof for.three equa-
tions in two unknowns. , AN

Consider the three equations  ax + by f«~3},\

82X + b0
: 45X -{;Qg,y = ¢
Recalling that these equations each represent lines, we should not
ordinarily expect a solution of the first two equations to satisfy
the third equation. In order forghis to happen, the three lines
would have to intersect in a.gsmmon point.

Suppose, however, thatithey have a common solution. Solv-

ing the first two equatiofis, for x and y, yields,

.ié‘n 1 a1 G

é;zbz - By €2l

X.=v= a1b1 ’ alb1
SO Jab as by

Since'thesN’é,lues must, by assumption, satisfy the third equation,

we ha‘(&\

¢ b1l b a4y ¢
o N 23] e by $1%C 1 _ o or, clearing fractions,
\m ™ a; by 2 b ‘
. ap by sz b
ok mer] o de bl g Snichis just an expansion
.8.'8_-.. Cnbzl_l-ba a2 C2 Gs 82 be ?
" lay bye
of the determinant | az be ¢z [ = 0, thus proving the theorem for
: a3 b €3 )

this case. We say that such a system is consistent,
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. Illustration,
Determine whether the system
3x—dy =7
X+6y=6
X—2y=2

has a solution,

Forming the eliminant 13 —4 7 » the student ean readily
1 6 6 A
¢\
1 -2 2 A\

verify that its value is zero. This is g necessary condition
but not a sufficient condition. However, mevmay solve the
first two of the given equations simul\tazfeéhsiy, and if the
values found satisfy the third equation'we shall know that
the system has a solution. x,\\,;
Solving 8x — 4y = 7 \‘

X + 6y = 8, :" v

»
N/

$

- These equations we sgl'x;ég in Sec.162 of this chapter.

Substituting these yalues of x and ¥y in the third equation,
yields, _ A

3 -2 =2,
and hence $he system has a solution. The geometric inter-
preta.tipg s that the three lines are concurrent.

¢ 3
N\
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ParT A
TO PROVE THAT V2 IS AN IRRATIONAL NUMBER \

K

In Sec. 39 we defined rational and irrational ¢ mﬁﬁbers.

We wish now to establish the fact that V2 is an irrational number.
Proof : Let us assume that V2 is rational, so that

Vi=pla 2O - &)

where p and g are two integers wpi{sh’a.re relatively prime.
Square equation (1), obtaining, ¢

2 = pfifor
297 =gt @

Equation (2) tells ugzt:ii:it p* is an even integer, since it is
twice another integer. If p? is an even number, then p is
an even humber®
[The even integers are 0, 2, 4, 6, 8, or any integer which
ends in hs}se integers. 'The square of any even integer
is eyen> Odd integers are 1, 3, 5, 7, 9, or any integer
ending in these integers. The square of an odd integer
odd)
,\\' inee p is even, it has a factor 2, and p? must have a factor
\ M.

Now divide both sides of equation (2} by 4, obtaining

“\0'.

O 2q2/4 = pt/4 = kor
/e =k or
. . g = 2k, 3
[We call p?/4 = k, because we know that p? is divisible
by 4.]

From equation (3) it follows by a similar argument that
q? and g are even integers. Hence p and q are not rela-
tively prime. Therefore, we are led to a contradiction of
our assumption, and 4/9 is not a rational number.

205
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Hence V2 ig irrational.
The method of argument used
ad absurdum.

ParT

in this proof is called reductio

B

THE NUMBER SYSTEM OF ALGEBRA

&

]

o

(. [ Positive and
Integers

negative numbers
AL and zero.
( Real Rational AN
. " : Both posiiive
?glorgﬁi N }ra.etlons { and negative.
mmber | A
ar whae gl ? ‘.
Complex. b=0, rrstio { Positive and
numbers 1 ) I \ onal negative.
(a -+ bi, where A\
aand b are -
real &
numbers.) ~\
\\
4 \Pirre (Complex numbers for
HNOlmaginary  which 5 = 0,)
Thig ehart shows the relationships among the kinds of num-

bers w¢ have used. Every number

yet e usually write some numb

agreements,

AL
1 represents v'— 1,

% + 0-i we write ag 2
0+ bi we write as bi.
0 4 0-i we write as 0,
14 0-i we write ag 1.
0+ 1-i we write ag 1

\
) 4

A

may be thought of as complex,
ers according to the following
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FINAL EXAMINATIONS

The next few pages contain copies of eight final examinations.
They are included for the purpose of aiding the student in prepar-
ing himself for examination.

The first six examinstions (A to F inclusive) do not have the
answers given. 'The last two (G and H) have answers given on the
following pages. O)

. ™\ ’

N

Suggestions for the Use of the Questionga,

In prepéring for an hour quiz on special topip’g,'siiick the ques-
tions dealing with any partieular subject from the first six exam-
inations. Solve the questions and check the results. Use the
outline and its illustrations to clarify obgiu}e matters.

When preparing for a final examination, use the first six sets
of questions, solving each for practice and review. Then find
time (about three hours) to sitdown with Examination G and
work the problems as you wpufd‘on an examinasion. Check your
work by using the answersigiven. If you have difficulty with
some questions, study theoutline on those parts again. Repest
this procedure with ,Ef:;}mination H, and you should be well pre-
pared for your final examination.

”\".\ N

\\ = EXAMINATION A

¢ \ “‘Answer any ten.
\J 1. Define function.
Solveforx: Vx +1=V9—x—Vx+4
2. Develop the formula for solving a quadratic equation.
Define and discuss the diseriminant of a quadratic equa-~
tion.

3. Simplify:

Xz -1/X 1+ 3i s A—UIY (AN L A-UE 1 1)

(“)X+1/_X+1(b)1 g (A Y(AM A1)
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4. Bolve simultaneously and check by graphing:
X4yt =25 x+y=25
5. Given the equation 2X? 4- 8kX + k+1 = 0. Find “k” g0
that
(a) the equation has equal roots.
(b) the sum of the roots is six.
{¢) one root shall be zero,
(@) the product of the roots is nine. O\

6. Givenlog 2 = .3010 log 8 = 4771 log7 = B451

{a) Find log A [(—1-%?@—2 ") Solve for gcjif =7

"’\
7. Write the first five and the eleventh terma ol

O\

(2x — i, Define logarithm., ) \\j
8. Evaluate:[2 1 —1 1 S\
1 2 3 l . ¢ X t ‘.x
2-1 1 2 '

*

11 1 1|3
9. Define complex numbqr;’;‘ State two theorems concerning
' —1 - V3 is

complex numbers. i @Bow by substitution that 3

a root of x? L4 M= ¢

10. State:Desqg:xfges’ rule of signs; the remainder theorem;
the fundamental theorem of algebra; the factor theorem.
Prove one/of them,

11, (4 State as a theorem the relation between the roots of a
WA\ polynomial and its coefficients.
LB} In how many ways can a set of 10 questions be chosen
Q from this examination?
}2. Bolve f

or all of the roots of :
X5+3X"+2Xs-—X"’-3X—2=0. _
13.  Solve for “y” only, By determinants:

X+ y4+2z2=0
Z— y—2z=—1
3x — By 4+ 6z = — 1,
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EXAMINATION B

Answer the first six questions. .Omit two of the last six
questions. '

—

. Solve the following equations:

(@ Vi+1+vx—-1=2 (b §X =2 \

_ oen .\:\'
9. A, Given f(x) = X"—j_’_‘;lt—l- Find (a) 18); B)d(~2).

B_. The base of a triangle is one unit more thata'ﬁﬁé‘a]titude.
Express the area of the triangle as a}’{m'ction of the
altitude. : RS '

3. A: Solve simultaneously: x* + y* = 8\)

X + Y .ﬁ
B. Draw the graphs of the two eguations in (4).
4. A. Given log2 = .3010 ) log3 = 4771
- Find (@) log12  &\" 003
(b) log '\/1’8: 3 (C) log 2
N (@) log 6.(300005,
B. Solve for x: }2{\= 18. '

5. Find all the mb&’éf the equation: 2x3 + 3x* +-3x + 1 = ¢
6. State and ,Pl:‘x()\}e the remainder theorem.
7. A. ]z)eihfe.-the formula for the sum of the first n terms in a

" ‘geometrical progresston.
" B\ Find the sum of the infinite series:

O s NS S SIS T
O 517871652
8. The plate of a mirror is 18 inches by 12 inches, and it is to be
framed with & frame of uniform width whose area is to be
" equal to that of the glass. Find the width of the frame,

9. By means of determinants solve for y:
' 2x —3y —4z= 1

x-+ 2y - 5z=—3

—x—2y+4z= 3
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10. A. Write the first 5 terms, the r-th term, and the last term
of the expansion of (x + y)»,
B. Expand: 2x — 1)%. Simplify each term.
11. A, If z varies inversely as the square of y and if z =4
when y = 3, find z when v = 6.
B, Determine k so that x? +kx+ 4 = 0 shall have:

{a} equal roots (b) one root equal to 3. « O\
12. A. How many permutations can be made of theclgtiers of
“football”’? \

B A box contains 5 black and 3 white balls.” Two balls
are drawn out at random. What ig\the probability
{a) that both balls are black? (&)"that one ball is
black? (¢} that both balls arewhite?
o
O
EXAMINATION C

Answer ten questions. "
1. (a) Define function S '
(8) Graph f(z) =x* — 7x + 8.
2. (a) Solve ax? {%:bx + ¢ = 0 by completing the square.
{6) Deterntine k in the equation kx? + 4x +4 1 = 0 so that
(1) “the roots will be real and equal,
(&) the sum of the roots will be 2.
3. Solyefor x and y, x® 4+ y2 — 11x 4 y—2=20
o° X —y +2=0,
ft{‘ a} Determine the equation whose roots are (1 + 2i),
{1 — 2i), and 3. '
(8) Find the roots of v'x — VX F£8— Vx+ 3.
1 5
5. {a) Expand (\75' —\/3) .
(b) Find the tenth term of the expansion of (x 4+ V)%
6. Given logy3 = 4771 logy? = 8451,
(¢) Find logov/14.7,
(b) Find log,7,
() Prove log, uy = log, u + log, v.
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7. (o) State and prove the remsinder theorem.
{t) Given the equation x* — 3x® — 2x* + 6x + 4 = 0, apply
Descartes’ rule of signs and find all the roots.

8. {a) Insert four arithmetic means between 2 and 12.
{t) In a geomeiric progression: a = 2
Find | and =. r=3
n==6 - O
9. Find the probability of drawing 2 white and 4 black balls in
a single draw from a bag containing 6 white and 7

black balls. ~\
10. (a) Set up the determinants for finding the ¥alue of x in the
following équations: \
22X —y+22=5 \
y—2z— 3w~ -—'71\\’
X+y+z+ 3w~
X — 2y + Tw £9= 0.
{(0) Evaluate the denomia:@fgr.”
11. If a heavier weight drawg'up a lighter one along a rough in-
' clined plane by mea#is of a string passed over a fixed wheel,
the space described in a given time varies directly as the
difference beﬁv}en the weights and inversely as their sum.
If 9 ounces.draws 7 ounces through 8 feet in 2 seconds, how
high will 12 ounces draw 9 ounces in the same time?
12. (o) Add graphically (5 4 2i) and (—1 + 7i).
(b). Express as a complex number in the form a + bi,
N 143
3 2—1i

EXAMINATION D

Answer any ten questions.

1. Solve the equation x* + 6x + 34 =0
Check by substituting the values found in the equation.

Reduce %—_T_—-g—: to & complex number of the form a + bi.
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Solvef(x) = x* — x — 6 = 0 by “completing the square.”
Check by graphing the function.
Solve Vax + 6 =3x — 11.

Solve simultaneously:
@x+ y=10 (B 2+2y4+ y2=o08
¥ —2x +5=0 Xy = 8.

Given log 2 = 3010 _ .
log 3 = 4771 . 3{(50)2 (.6) 9 <O
log 7 = 8451, Findlog \/%—21 SN

Define logarithm.

The intensity of illumination varies inversely’ as the square
of the distance from the souree of lighpe’ If the intensity
at a distance of 12 feet is 30 cand\i@;power, what is it at
20 feet? ' \’

Define arithmetic, geometric,and harmonic progressions;
and give an example of egeh,”
Find the sum of the even ZJ¥mbers between 1 and 100.
Derive two of the following: :
Formula for sum of geometric progression.
Formula for,sten of arithmetic progression.
Formula.{df solving a quadratic equation.

" Write the first five torms of (2x - 3)5,

State thrét/theorems applying to determinants.
Sd‘fﬁ?ﬁ' “2” only, by determinants:
'§~‘ 3X+4y——2z=5

R\ 4 — 3y + 8z~ —4

11.

&

2x+8y-—32=5_.

Find all of the roots of x5 +8x 4 2% —x2 _3x - 2=0.
Write an equation whose T00ts are the roots of the above
equation each diminished by 2.

Write an equation whoge roots are double the roots of the
given equation. '

In how many Ways can three prizes be awarded in a bridee

contest in which 20 participate, if only one prize goes to
an individual?
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In how many ways can a committee of 5 be chosen from 6
men and 5 women, if three men and two women are to be
on each committee?

12. State Descartes’ rule of signs. State the fundamental
theorem of algebra. State the remainder theorem, and
illustrate it.

EXAMINATION E . \

7
4

Angwer any ten. <
1. (a) Graph and find the zeros of y = x* < 53+ 4.
(B) Solve:1) x*+ 8 =0,and2) 3 <X —8=0
In the following, set down the detpf;fﬁi\nant solutions for y.
Evaluate the denominator onfy:\/

b

x—y+3z t8w=9
3x—y—z.j~}-"i?v = 7
X+ yhET+ bw = 12
X — 2 — 6w = 0.

3. Solve the followi:gg:for x and y:
o9 + 3x — 222
Oy +=x-3 =1{.
Write ot the first, second, third, fourth, and eighth terms
O
d{"}ﬁé expansion of (x — ;2()10.
5.0 é—iven log 2 = 0.3010, log 3 = 04771, and log 7 = 0.8451,
~) 31700 0.002 ..
O (@ tnd og TPV, ) ind log: 30,
() find x if 70% = 300.

-

6. Tiw=tE @ mdfVD, © nd {5y
and simplify.

7. A man has $10,000 invested, part at 5% and part at 6%.
The interest for one year on the 5% investment exceeds
the interest for one year on the 6% investment by $60
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How much does he have invested at each rate? (Work
algebraically.) -

8,9. TFind all the roots of 2x* — gy? +8 +5=0.
Check your result by graphing y = 2x? — 9x2 + 8¢ + 5.

10. If five balls are selected at random from a bag containing 6

white, 4 black, and 7 red balls, what is the probability that
the five will consist of two red and 3 white ballg?

11.  The following are reducible to quadratics by meang&f Buitable
NS ¢

substitutions. C
Bolve: N
(@) x* — Bx + 3V%® — 5x + 10 =)>2
2 ' ™
or () x4 1 X 5 O

x XXF17F
12.  Apswer two of the following: (ga':‘éﬁate and prove the re-
' mainder theorem, (p) Derivesthe formula for the sum

and produet of the roots in $he’equation ax® + bx + ¢ = 0.
(c) Prove log MN = logM -}- log N.

_{EXAMINATION F

Answer any Ee}l
L (a) B@s(x) = iz i':’-’;

\fm“d i(y) in terms of X,
){Qu(“b) solve V2x — 1 — Vi+3=1

2.\ Given log 2 = 0.3010, log 3 = 0.4771, log 3.75 = 0.5740,

O log 3.74 = 0.5729, Answer two parts:

\‘;

313747(0.003)2
(e} find log _1%1_20_93)__, (b) find x if 375% = 200%.3,

(¢} find logx375.

3. Do not evaluate the determinants in the following.
(@) Bolve for ¥ by determinants if 2x — 3y + 7z =4
y—3z+x+l=0,z+3x+4y=8.
. (6) Under what conditions will kx — 3y —85=0,3x+y—
16 = 0, kx + 6y — 5 = 0 be consistent?
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i0.

Evaluate the following determinant:[4 7 5 -3 1
: 1 1 2 10

0 2 3 -4 0

3 21 00

1-11 10

Find k =0 that x® — 3kx + 4k - 1 = 0 shall have:
{a) equal roots, (b) 3 for a root, (¢} one root equal {0 0,
{d) the product of its roots equal to 9, (¢) the sum of its roots

equal to 3. A
Solve y? + 3xy = 28, x* + y* = 20. . O
Tind the first four and the Tth term in the éxpansion of
{X"‘ — 2y2 -3 : w'\g 7

(@) Find the sum of all integers between 200 and 900 that
are divisible by 7. (B) Find:th,‘ limiting value of
0.6272727. . . . R

State four theorems conceming:thé roots of & quadratic

equation and prove one of them.

How many words can baiﬁi’nﬁed from 8 consopants and &

vowels if each wordsg*to consist of 4 consonants and 2
vowels? .

"N
11,12, Sketech v = {Ex) = 9x% — 5x2 — 8x + 6 and find all the

roots of { (JQ)X= 0.

13. Write thg»\'féﬁbwing in the form of an equation: the bend

\‘:

™

eN”Y
N oo

1.

(B) of.& rod supported at both ends varies directly as the
Wi 0}; (M) hung &t its middle point, directly as the eube
\'t\li"the length (1) of the rod between supports, inversely
\as the width (W) of the rod, and inversely as the cube of

the depth {D).

EXAMINATION G
Answer ten questions including number 10,

F;actor each of the following:
(@ xt—yt= @B x*-—y= @ xt—-y+2y—1=.
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b

1

a
i ®1-——.

2. Simplify: (a) b* _a* 1-1
I 1.7 x
& ab ' p?

3. Solve simultaneously xy + 2x = 5 and 2xy — y = 3.
4. (a) Develop the formula for solving the equation
Ax? + Bx 4+ C = 0. N\
(6) Write the first three and the 9th terms of (x 2y)¥.

5. State three theorems concerning a quadratic eqiation in one
unknown, and prove one of ther. N\ :
Define: funetion, logarithm, discriminant el & quadratic.
6. Solve for “y” only, using determinants.'";.\
2x — y+4 3z =35
x4 3y + 2z.\*-—:.\15
3X "'I" 4y ‘~': 3= 1.
7. Given log 2 = .3010
log 3 = 4771 . (Hind log
log 7 = B451. o3
8. Simplify each of the following:
@ (07~ 1005 1) (~ P (o) (it — by,
9. (o) State aaxgi develop the formuls, for the sum of an arith-
metie progression.
(%) Expbess the repeating decimal 0.181818 ... a8 &
..\:“fraction.
10. \State as many facts as you can concerning the roots of
,.s'\ X5+ 2% — Txb — J4x2 - 18% — 36 = 0, Fing all the roots.

var. (24).
1.5

:.@:13.' (@) In how many ways can 6 people be seated at a round

table?
{6) In how many Ways can 6 people be arranged in a straight
line? _
©) If Cln, 5) = C(n, 4), find n.
1 1 2 71
12.  Evaluate the determinant: {0 2 3 —¢
3 2 1 o
1 -1 1 1
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i

2.

-

/N

\ )

7. Given log 2 =

E

XAMINATION H

Answer ten questions.

: .(x__a)_xg—{—aﬁ
Simplify xta _ ¢
(x +a) — (x —a)
x+a ’ ,\:\’
1-1 0 2 O
0 1 2 -2
Eval . ' )
valuate 3 1 1 1 _ D
-1 1 2 2 %)

Solve for “z’! only using determinants: <)

x + y—|—2z=4'\’;,\'
x + 2y + z=ﬂ4‘:;

2x + v+ z,.='.4.

Define: logarithm,
number.

Show that if £(x) = ¥k x + 1, then f(

function, F06t of an equation, imaginary

-1 +vV =3\
SESZ

*

' 9 - -
{a) A can shove thesnow from a walk in 2 hours. B can do

it in 3 hours. How long will it take both of them
working together? _
(b) Whag\s the probability of drawing one white and one
Mlack ball from 3 bag containing 5 white and 6 black
¢\ balls, if two balls are drawn?

6. "\(a') Write the first four and the 14™ term of (\/ ox — ).

\Ab) What fraction
123123 . . .

fog 15.

. Solve the equation

8.

base 37

(b) What is the
What does it

is represented by the repeating decimal
?

3010, log 3 = 4771, log 7 = .8451. Find

3% == 200. What is the log of 200 to the

() Develop the formula for solving ax? + bx + ¢ = 0.
diseriminant of & quadratic equation?

tell us concerning the roots?
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10.

11.
12.

13.

{¢) Determine “k” so that the sum of the roots of kx? +
7x +k = 0 shall equal 14.

Solve simultaneously and graph:y® = 8z and 2x + y = 8.

2v3 -1

+v3 _
tors. A\

T30 ]

(¢) Simplify (g_x_—_) + = : O\

¥ x~* .
'\

Find all of the roots of: x4 -+ 218 — 9t — 105524 = 0.

{a) Rationalize (b) Factor x® — y® into 4 fac-

State: the remainder theorem; Desca,rtes’aiiile of signs; the
fundamental theorem of algebra; aXthéorem concerning
the number of roots of a polynom@}. Prove one of them.

Write an equation whose roots, aixfé},ach three less than the
roots of the equation givendinvproblem 11.

What facts can you state abo‘lit a polynomial of odd degree
whose signs are alternately 4+ and —? :

What is the sum of the Yoots of the equatmn

x3+5x—2—-0‘?
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Answers to Examination Questions

Exzamination Q.

1. (@ x—y x4+» &+
o) & -y &+ ¥
€ G—y—-D@E+y+ 1.

2. {(a) (a - b).

O

3. (1,3, (5/4,2).
4. (a) See Sec. 67, part d.

®) = — 5Tx%(2y) + §15—6 RS2V,

Ninth term = -+ C(57 8)x“(2y§3
See Sec. 68.
y= 2
1.8651.

(@) 3/10, @) i”\\@ a + 2Vab + b.
@ s=73 (a‘;t-\l), (b) 2/11.

10. x_,a.gm -8 —V- 2, + V-2
11. @1’20 by 720, ") n=09

138 48
i"\"

\/Exa.mmation H.

o
\w
")
s‘*
>
™

N

© ® e P

a
L -

—34.

B = 1..

Answer given in problem.

{a) 6/5 hours. () p = 6/1L

7

) \<<,

§¥
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6 @) (VE" ~ 150V + B My
_ 15 14 13( ViRyegy
Fourteenthterm = -0(15 13)(Vxtys = —~c15,2) (2x)y".

&) @5 o

log15 = 11761  x = 4.82 loga 200 = 4.82, ¢y

(a) Bes Sec. 67, part d.
(b) Bee Sec. 68, item 3.

K,//

4
N\
Y

€ k=31 \:\\ 3
9. (2, 4)and (8, -8). \\\\
10. (@) 1= 3V3_ \\\

@wa&+ww+wf%w~w+w.
© \
32 \

N
_3Y —
1. x=3 —4, :l_‘t_‘é;z,ll_:il/:j
12. See Chapter X}%tﬂ

18. (a) xt+ 14-(\# 63x2 + 98x = 0,
by At ]eaat one positive root; no negative roots.

(c) Sll-q}\\ N
g\ul
Nl
,\\:I’
l"\ w4
N
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Absgeissa, 49 Degree. of & term
Absolute inequalities, 113 ngrm, equation ’I?J
Addition, 3 Dependent variaiale 50
of fractions, 21 events, 189
of radicals, 3¢ Descartes’ rule of signs, 166 /A
Aids in graphing, 52 Determinants, 193 (\)
Approxzimation of roots, 172 properties of 108 o)
Arithmetic means, 142 Direet variation, 45 4™
progression, 138 *  Discriminant, 74 ;‘n;,
Associative law, for addition, 3 Division, 6 o
for multiplication, & by zero, 2 \\
Asymptotes, 53 . of fractions\22)
Axes; coordingte, 49 of radicalg)a2v’
of imaginaries, 153 synﬁheuq,\ 150
Axioms of equality, 8
Flementsiof a determinant, 194
Base, change of, 136 Elirhinazit, 203
Bmmmal coeﬂiclents 148 Ellipss; 59
" theorem, 147  Equation,
Sdefective, 96
Cancellation, 22 _ . ,2 A degree of, 10
Change of ba.sa, 136 " N identical, 9
'Charactenstlc, 125 N\ mconslstent 62
rules fOT, ~ quadratic, 6
Circle, 56 - \ quadratic in form, 99
Clearing of fractions, 108" redundant,
Coefficients, § - L roota of, 10 70
- Cofactor, 194 \ zeros of 70
Col rithm, 133 Equa.tmns, classification of, 10
inations, 183 conditional, 9
Common dlﬁemﬁce, 138 consistent, 62
Common, lqgam.hms, 124 dependent 62
Commutative law for addition, 3 equivalent, 62, 96
for multiplication, 5 exponentml 133
Completing the squate, 71 homogeneous, 202
Complex fractions, 25 involving fractmmal indices, 99
Bomplex number, 68, 161 1111;:01“1&% radicals, 1
wBOI,
\ } gml:!:ﬁlgca_l addition, 154 loga.nthmlc, 133
-graphical interpretation, 153 symmetrical, 83
hical suhtra.chon, 154 transformation of, 163
Compliex plane, 153 Equivalent, equat.mns, 96
Jguts,txon with logarithms, 131 ract.ro:;s,
tions, 9 Examinations,
tmﬂe? 11?3 . Excluded values, 53
Oonjugnte complex numbers, 68 EXPBC':-;::D mathematical, 191
. nents,
Courdlnate axes, 48 . _EXPOrmctmn 3, gﬂ
cimals, repea irrational,
Be ‘. ting, 134 Iaws of, 23

Defeetlve equations, 96
221
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INDEX

Exponents {Cont.):
negative, 31
zero, 31 .

Exponential equation, 133
graph of, 135

Extent, 53

Extransous solutions, 96

Factor, highest common, 18
Factor theorem, 158
Faetorial notation, 147
Factoring, 13
Final examinations, 207
Fractional exponents, 32
Fractions, 21

addition of, 21

complex, 25

equivalent, 23

products of, 23

quotients of, 24

reduction of; 21
Funetiofi, 50
Fundamental operations, 1

Fundamental theorem of algebrs, 160

Funetional

Geometric, means, 142
Progressions, 14
progressions, infinite, 143

Graphical representation, 52

Graphing, aids in, 52

Graphs, 47

notation, 50

exponential equations, 135

linear equations, 61, 62)\61
logarithmie oquations, 135

polynomials, 16 -
quadratic equations, 71, 74
Groupin% of terms, 4
laws of, 4 5\
¢
Harmonig rogrossions, 141
Highest, tommon factor, 18

™

Homogeneous equations, 202
HOI?‘QS 3, '

BET'E metho
" Hyperbola, 59

4o Identical equations, 9
\ “Imaginary, numbers, 88, 206
4 roots, 74
unit, 68
Independent, eventa, 188
variable, 50
dex of a root, 34
Inequalities, 113
absolute, 113
conditional, 113
graphieal soluticn of, 116
properties of, 113

174

NS

QY

")
<N

Infinite geometric progression, 143

Integers, 1

Intercepts, 53

Interpolation, 129

Inverse variation, 45

Irrationsl, exponents, 120
numbers, 39, 205
roots, 167

Joint variation, 45

Laws, associative, 3, 5
commutative, 3, 5 A\
distributive, § (NN
of exponents, 2§
of radicals, 35 . \,

Linear equations, 60,
graphs of, 71,73,
one unknov(n,, 60
two unknowns, 60
three unknowns, 64

Logerithoiie equations, 133
gr of, 135
inifhme, 120

tommon, 124

X 3

M\graph of, 135
\J/ g;s of, 122

properties of, 122
tables of, 126, 127
west common multiple, 19

Mantissa, 125
Mathematical sxpectation, 191
induetion, 145
Mean proportional, 44
eaning of discriminant, 74
Means, arithmetic, 142
eometric, 142
Earmonic, 142
Minors, 104
Multinomials, 7
Multiple, lowest
Multiplication, 5
of fractions, 23
of multinomials, 7
of radieals, 41
Mutually exclusive events, 180

common, 19

Nature of the roats of = qu'adratic.
7

of problem solving, 92
Natural base “e,”” 137
Negative, exponents, 31

irrational roots, 177

numbers, 2
Notation and symbols, 92
Number system of algebra, 2068
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~ Numbers, complex, 68 . : Radicals {Cont.}:
imagi , 68 ] simplifieation of, 38
irratio 39 similar, 34
negative, 2 subtraction of, 39
prime, 3% . * Radieand, 34
rational, 38 . . changes of, 37
relatlvefy prime, 38 Ratio, 44
Rationsl numbers, 38
Operations, fundamental, 1 Rationalization of denominator, 37
Grdinate, 49 Reasoning,
- Origin, 4% Reciprocal, 24 )
Rectangulsr coordinates, 50 N\
Parentheses, use of, 4 reductio ad absurdum, 206
Permutations, 181 - redundant equations, 96 X
Pelynomial, 157 Relation between roots a,nd cbefﬁ-
graph of, 169 cients, 162 4
Prime numbers, 38 Relative frequency, 191, §
Principal roots, 34 Remainder theorem, 158 N
Proba.gility, 187 Boots of an equa.tmn, 0, 70, 162
dependent events, 189 of unity, 166 &
empirical, 191 principal, 34 N )
independent events, 188 Rule of srgna, 6
mutually exclusive events, 189
Problems involving, age, 109 Betting up’ eﬁuatlons, 93
- clock, 110 Similarxadicals, 34
digits, 112 Simitageous aolutwns, 78, 80
fractional indices, 99 ofigpecial types, 84
 levers, 110 Simpltfication of radicals, 38
. mixtures, 107 ¢Balutions, extraneous, 96
rates, 106 Bpecial products, 11
radieals, 104 «\ ¥ 8quare root of negative mumbers, 67
" work, 108 " qutra.ctlon of rsl.t.lg'!i als, 39
Problem SDlvmg, nature Of 92 Bum of the raotg, 75 162
Products ‘binomial types, 1]:\ Symbo]s of gmuplng, 4
of fractions, 23 : of notation, 92
of radicals, 41 \\ Symmetry, 53
of roots, 75, 162 Bystems of equations, 62
Progreamon, deﬁmtmn, 138 linear, two unknowns, 62
anthmetic, 138 ¢ linear, three unknowns, 64
metrie, 140‘ quadmtlc, 78
armonie, I Synthetic division, 159
Pm?ertles, oi detelrlngnnanta, 198
o o8, Tables of logarithms, 126, 127
Proportdtgsh Ferms, 9
. Theorem, binomial, 147
rant, 49 factor, 158
, atlc, equation, 66 remainder, 158
formula, 73 Theory of equations, 157
gystems of, 78 Trang oma{c}llon of gg Equatmn, 183
' aéfhath’ 34r 39 ypiel proviem,
ion o .
division of, 42 Ynit, imaginary, 68
eqé:atm?s :ﬁwolvmg, 104 mfspof P1355 €
index o 4
of samme order, 40 Unlimited geometric progression, 143
1aws of, 35

product of, 41 Variable, 9
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Variable (Cont.): Words to symbols, 93
_ dependent, 50 ‘Work, problems involving, 108
independent, 50
Varigtion, combined, 45 Zero, 2
direct, 45 Exponent, 31
- inverse, 45 properties of, 2
joint, 45 of an equation, 70
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